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Abstract— With the increasing demand to deploy convolutional
neural networks (CNNs) on 5G mobile platforms, architecture
designs with efficient sparse kernels (SKs) were proposed, which
can save more parameters than the standard convolution while
maintaining the high accuracy. Despite the great potential,
neural network designs with SKs still require a lot of expert
knowledge and take ample time. In this paper, we first propose
a search scheme that effectively reduces the SK design space
based on three aspects: composition, performance, and efficiency.
Meanwhile, we completely eliminate the model training from
our search scheme. Instead, an easily measurable quantity,
the information field, is identified and used to predict the model
accuracy in the searching process. Additionally, we provide a
detailed efficiency analysis on the final designs found by our
scheme. Second, based on the analysis we propose a model
transformation scheme to better utilize the SK designs on existing
models to either reduce the number of parameters or increase
the accuracy. Last, considering the extra programming overhead
and the expert knowledge required by the model transformation
scheme, we develop a compiler prototype to automate the entire
process, given the source code of an existing model. Experimental
results show that models composed of the sparse kernel designs
searched by our search scheme can beat state-of-the-art networks
such as ResNets in terms of the accuracy and the efficiency. Also
by using our model transformation scheme we can easily improve
the accuracy (the same number of parameters) or the efficiency
(the same accuracy) upon existing state-of-the-art models.

Index Terms— 5G edge devices, efficient CNNs.

I. INTRODUCTION

CNNs have achieved unprecedented success in visual
recognition tasks. The development of 5G mobile devices

drives the increasing demand to deploy these deep networks

Manuscript received March 28, 2020; revised December 8, 2020; accepted
January 28, 2021. This work was supported in part by the Director of Com-
puter Application Research Institute Foundation under Grant SJ2020A08 and
in part by the China Academy of Engineering Physics Innovation and Devel-
opment Fund Cultivation Project under Grant PY20210160. The Associate
Editor for this article was S. Garg. (Corresponding author: Xiaolei Liu.)

Kun Wan and Jianyu Yu are with the Department of Computer Science,
University of California at Santa Barbara, Santa Barbara, CA 93106 USA
(e-mail: kun@cs.ucsb.edu; jianyuyu@ucsb.edu).

Xiaolei Liu is with the Institute of Computer Application, China
Academy of Engineering Physics, Mianyang 621900, China (e-mail:
liuxiaolei@caep.cn).

Xiaosong Zhang is with the Cyberspace Security Research Center, Univer-
sity of Electronic Science and Technology of China, Chengdu 611731, China
(e-mail: johnsonzxs@uestc.edu.cn).

Xiaojiang Du is with the Department of Computer and Information Sciences,
Temple University, Philadelphia, PA 19122 USA (e-mail: dxj@ieee.org).

Nadra Guizani is with the School of Electrical Engineering & Computer
Science, Washington State University, Pullman, WA 99163 USA (e-mail:
nadra.guizani@wsu.edu).

Digital Object Identifier 10.1109/TITS.2021.3056426

Fig. 1. Solutions for applying deep learning on the 5G edge devices.
a) Traditional public cloud solution, b) Edge-learning-based public cloud
solution.

on mobile platforms such as cell phones and self-driving
cars. However, CNNs are usually resource-intensive, making
them difficult to deploy on these memory-constrained and
energy-limited platforms. For example, the size of the AlexNet
model [2] is over 200MB and the VGG-16 [3] is over
500MB [4].

To take advantage of the power of deep learning, a tradi-
tional solution is to rely on the public cloud. As shown in Fig-
ure 1a, 5G edge devices like cell phones send images/data to
the public cloud which contains lots of computing power, then
the public cloud will send the desired labels/results back to
the devices. Nonetheless, such a solution is extremely time-
consuming, tedious, and error prone due to the unreliable
network between 5G edge devices and the public cloud [5].

To solve the problem, we decide to directly deploy pre-
trained models on 5G edge devices like Figure 1b. To real-
ize it, we need to compress the model while keeping its
accuracy/performance as much as possible. Previously, sev-
eral techniques have been proposed, including pruning [4],
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Fig. 2. Comparison between the standard convolution and the group
convolution.

[6]–[19], quantization [20]–[32], and low rank approxima-
tion [33]–[43]. Though these approaches can offer a reasonable
parameter reduction with minor accuracy degradation, they
suffer from the following three drawbacks: 1) irregular net-
work structure after compression, which limits performance
and throughput on GPU; 2) increased training complexity
due to the additional compression or re-training process; and
3) heuristic compression ratios depending on networks, which
cannot be precisely controlled.

Recently, the SK approach was proposed to mitigate these
problems by directly training networks using structural (large
granularity) sparse convolutional kernels with fixed compres-
sion ratios. As an example, group convolution [44] achieves
sparsity over the channel dimension by limiting the number
of input channels each output channel connects to, which is
illustrated clearly in Figure 2b. The idea of SK was origi-
nally proposed as different types of convolutional approaches.
Later researchers explored their usages in the context of
CNNs by combining some of these SKs to save parame-
ters/computation against the standard convolution. For exam-
ple, MobileNets [45] realized 7× parameter savings with only
1% accuracy loss by adopting the combination of two SKs,
depthwise convolution [46], and pointwise convolution [47],
to replace the standard convolution in their networks.

However, despite the great potential with the SK approach to
save parameters/computation while maintaining accuracy, it is
still unknown how to craft an SK design with such potential
(i.e., effective SK design). Prior works like MobileNet [45] and
Xception [48] adopted simple combinations of existing SKs,
and did not state the reasons why they choose such a design.
Meanwhile, it has been a long-existing question in the field
whether there is any other SK design that is more efficient than
all the state-of-the-art ones while still maintaining a similar
accuracy with the standard convolution.

To answer this question, a native idea is to try all possible
combinations and get the final accuracy for each of them.
Unfortunately, the number of combinations will grow expo-
nentially with the number of kernels in a design, and thus
it is infeasible to train each of them. Specifically, even if
we limit the design space to four common types of SKs –
group convolution [44], depthwise convolution [46], pointwise
convolution [47], and pointwise group convolution [49] – the
total number of possible combinations would be 4k , given that
k is the number of SKs we use in a design (note that each SK
can appear more than once in a design).

In this paper, we first craft an effective SK design
by efficiently eliminating poor candidates from the large

design space. Specifically, we reduce the design space from
three aspects: composition, performance, and efficiency. First,
observing that in normal CNNs, it is quite common to have
multiple blocks which contain repeated patterns such as lay-
ers or structures, we eliminate the design space by ignoring the
combinations including repeated patterns. Second, realizing
that removing designs with large accuracy degradation would
significantly reduce the design space, we identify an easily
measurable quantity named information field behind various
SK designs, which is closely related to the model accuracy.
We get rid of designs that lead to a smaller information field
compared to the standard convolution model. Last, in order
to achieve a better parameter efficiency, we remove designs
containing redundant SKs which do not contribute to the size
of the information field. With all aforementioned knowledge,
we present an SK scheme that incorporates the final four
different designs automatically reduced from a large original
design space.

Additionally, in practice, researchers would also like to
select the most parameter/computation efficient SK designs
based on their needs, which drives the demand to study the
efficiency for different SK designs. Previously, no research
has investigated the efficiency for any SK design. In this paper,
three aspects of efficiency are addressed for each of the designs
in our SK scheme: 1) what are the factors that could affect the
efficiency in different scenarios? 2) what is the best efficiency
that could be achieved combining all these factors? 3) what is
the condition for the best efficiency to be achieved?

Besides, by considering a case in real life instead of building
a model completely from scratch, researchers are more likely
to make modifications on existing models to realize a specific
resource constraint. In this paper we propose a model transfor-
mation scheme to better utilize the SK designs to achieve this
goal. Specifically, given an existing model, the transformation
scheme will iterate through each layer and find the most
efficient design in our SK scheme, then replace it based on
the layer information and the efficiency analysis of different
designs.

However, this process would require a lot of expert knowl-
edge, e.g., selecting the most efficient SK design. In addition,
the extra programming overhead would also be a problem.
Unlike the transition within different variants of one type of
network (e.g. from VGG-16 to VGG-19), simply modifying
the loop count will not work for the model transformation
since different layers of a network could be replaced with
totally different SK designs, not to mention different types of
networks.

To mitigate this problem, inspired by the concept of intent-
based networking [50], [51], in this paper we integrate the
model transformation scheme with a compiler prototype to
automate the entire process. Specifically, given the code of an
existing model, the compiler will first convert the code into
an abstract syntax tree (AST), and for each layer the layer
information can be extracted from the tree. Then as per the
information, the best SK design is chosen and the replacement
can be conducted by directly modifying the AST. Last, after
replacing all convolutional layers, the AST will be converted
back to the new source code.
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The contributions of our paper can be summarized as
follows:
• We are the first in the field to point out that the informa-

tion field is the key for the SK designs. Meanwhile we
observe that the model accuracy is positively correlated
to the size of the information field.

• We present a SK scheme to illustrate how to eliminate
the original design space from three aspects and incor-
porate the final 4 types of designs along with rigorous
mathematical foundation on the efficiency.

• We provide some network designs which are in the
scope of our SK scheme and have not been explored
yet and show that they could have superior performance
compared to state-of-the-art network units.

• We are the first to propose a model transformation scheme
to provide guidance on how to apply SK designs on
existing models to either reduce the number of parame-
ters or improve the accuracy.

• We develop a compiler prototype to automate the entire
process of model transformation and experiments show
that transformation on some models could even result in
smaller networks with better accuracy than other existing
efficient models.

II. PRELIMINARIES

We first give a brief introduction to the standard convolution
and the four common types of SKs.

A. Standard Convolution

Standard convolution is the basic component in most CNN
models, kernels of which can be described as a 4-dimensional
tensor: W ∈ R

C×X×Y×F , where C and F are the numbers of
the input and the output channels, respectively, and X and Y
are the spatial dimensions of the kernels. Let I ∈ R

C×U×V be
the input tensor, where U and V denote the spatial dimensions
of the feature maps. Therefore, the output activation at the
output feature map f and the spatial location (x, y) can be
expressed as,

T ( f, x, y) =
C∑

c=1

X∑
x ′=1

Y∑
y′=1

I (c, x − x ′, y − y ′) ·W (c, x ′, y ′, f )

B. Group Convolution

Group convolution was first used in AlexNet [44] for
distributing the model over two GPUs. The idea of group
convolution is to split both the input and the output channels
into disjoint groups and each output group is connected to a
single input group and vice versa. By doing so, each output
channel will only depend on a fraction of input channels
instead of the entire ones, thus a large amount of parameters
and computation could be saved. Considering the number of
groups as M , the output activation ( f, x, y) can be calculated
as,

T ( f, x, y) =
C/M∑
c′=1

X∑
x ′=1

Y∑
y′=1

I (
C

M
� f − 1

F
M

� + c′, x − x ′, y − y ′)

·W (c′, x ′, y ′, f )

C. Depthwise Convolution

The idea of depthwise convolution is similar to the group
convolution, both of which sparsify kernels in the channel
extent. In fact, depthwise convolution can be regarded as an
extreme case of group convolution in which the number of
groups is exactly the same as the number of input channels.
Also notice that in practice, usually the number of channels
does not change after the depthwise convolution is applied.
Thus, the equation above can be further rewritten as,

T ( f, x, y) =
X∑

x ′=1

Y∑
y′=1

I ( f, x − x ′, y − y ′) · W (x ′, y ′, f )

D. Pointwise Convolution

Pointwise convolution is actually a 1× 1 standard convolu-
tion. Different from group convolution, pointwise convolution
achieves the sparsity over the spatial extent by using kernels
with 1 × 1 spatial size. Similarly, the equation below shows
how to calculate one output activation from the pointwise
convolution in detail,

T ( f, x, y) =
C∑

c=1

I (c, x, y) ·W (c, f )

E. Pointwise Group Convolution

To sparsify kernels in both the channel and the spatial
extents, the group convolution can be combined together with
the pointwise convolution, i.e., pointwise group convolution.
Besides the use of 1×1 spatial kernel size, in pointwise group
convolution, each output channel will also depend on a portion
of input channels. The specific calculations for one output
activation can be found from the equation below.

T ( f, x, y) =
C/M∑
c′=1

I (
C

M
� f − 1

F
M

� + c′, x, y) · W (c′, f )

III. SPARSE KERNEL SCHEME

Recall that the total number of combinations will grow
exponentially with the number of kernels in a design, which
could result in a large design space. In this paper, we craft the
effective SK design (i.e., design that consumes less parameters
but maintains accuracy with the standard convolution) by
efficiently eliminating the design space.

Specifically, we first determine the initial design space by
setting the maximum number of SKs (length). To decide this
number, two aspects are considered: 1) in order to give the
potential to find more efficient designs which have not been
explored yet, the maximum length of the SK design should
be greater than the number of all the state-of-the-art ones;
2) it is also obvious that the greater length is more likely
to consume more parameters, which contradicts our goal to
find more efficient designs. Therefore, combining the two
aspects together, we set the maximum length to 6, which is
not only greater than the largest number (i.e., 3) in all current
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designs, but also ensures that designs with the maximum
length will still be more efficient than the standard convolution.
As a result, the original design space can be expressed as
(41 + 42 + · · · + 46).

Algorithm 1 Design Space Reduction
1: S: the original design space
2: CalculateIn f o(): calculate the new information field
3: ST AN D ARDI N FO: information field of standard conv
4: import re � standard regular expression module
5: for each design d in S do
6: if re.match(“(.+?)\1+ ”, d) then
7: S.remove(d)
8: end if
9: end for

10: curr In f o← (1, 1, 1) � initialize the information field
11: for each design d in S do
12: f lag← 0 � flag to indicate the early-stop
13: for each kernel k in d do
14: preIn f o = curr In f o
15: curr In f o = CalculateIn f o(preIn f o, k)
16: if curr In f o == preIn f o then
17: f lag← 1
18: break
19: end if
20: if curr In f o <= ST AN D ARDI N FO then
21: continue
22: else
23: f lag← 1
24: break
25: end if
26: end for
27: if f lag == 1 then
28: S.remove(d)
29: continue
30: end if
31: if curr In f o < ST AN D ARDI N FO then
32: S.remove(d)
33: continue
34: end if
35: end for
36: return S

A. Reduce the Design Space

We then start to reduce the design space from three aspects:
composition, performance, and efficiency. In the following
paragraphs, we will introduce the three aspects in detail. The
overall flow to reduce the design space from the three aspects
is shown in Algorithm 1.

1) Composition: The overall layout of CNNs provides a
good insight for us to quickly reduce the design space.
Specifically, in normal CNNs, it is quite common to have
multiple stages/blocks which contain repeated patterns such
as layers or structures. For example, in both VGG [3] and
ResNet [1] there are 4 stages with several repeated layers
inside each stage. Inspired by this fact, when we replace

the standard convolution using various SK designs intuitively
there is no need to incorporate these repeated patterns into
the original place of each standard convolutional layer. For
example, if there are three types of SKs, A, B, and C, then
the following combinations should be removed as contain-
ing repeated patterns: AAAAAA, ABABAB, and ABCABC.
AAAAAA contains the repeated pattern of A, while
ABABAB and ABCABC have the patterns of AB and ABC,
respectively.

Repeated patterns are also easy to detect, which makes the
entire process extremely fast. To find such patterns, we can use
the regular expression matching. The corresponding expression
for the matched combinations should be (.+?)\1+, where
(.+?) denotes the first capturing group which contains at
least one character, but as few as possible, and \1+ tries to
match the same character(s) as most recently matched by the
first group as many times as possible. As a result, we can
efficiently eliminate the design space with the help of the
regular expression.

2) Performance: There are many SK designs that could
result in large accuracy degradation, which gives us another
opportunity to greatly reduce the design space. To get rid of
them, we need an easily measurable (i.e., no training) property
behind various designs that could directly indicate the final
accuracy. Fortunately, after analyzing many prior works and
conducting many experimental studies, we do find such a
property. We name it the information field.

Definition 1 (Information Field): Information field is the
area in the input tensor where one or more convolutional layers
are used to generate one output activation. For one output
tensor, sizes of information fields for all activations are usually
the same.

Figure 2a shows the data dependency for the standard
convolution, from which we can also find out the size of
the information field. Assuming the spatial kernel size is 3×3,
starting from any output node in the figure, we can see that
in terms of the channel dimension, each output channel will
connect to all input channels. For the spatial dimensions, one
output activation will depend on activations inside a 3 × 3
spatial area. Therefore the information field for the standard
convolution will be (3, 3, C) where C is the number of input
channels.

We find that information field is the key behind all
SK designs, and also observe that the model accuracy is
positively correlated to the size of the information field,
the idea of which is also validated by later experiments in
Section VII-A.

With the help of information field, SK designs that would
result in large accuracy degradation can be easily removed
from the original design space without actually training the
models. Specifically, for each design, we first calculate the
size of the information field by adding it up sequentially
from the leftmost kernel to the rightmost one. For example,
we use a three-dimensional vector, (1, 1, 1), to represent the
initial values of information field on three different dimensions
(i.e., two spatial dimensions and one channel dimension), then
corresponding values of the vector will be updated based
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on the known properties of the SK encountered.1 After the
rightmost kernel, the final vector we get will be the size of
the information field for the design. Finally, we compare it
with that of the standard convolution. If the two sizes are
the same, we will keep the design, otherwise we will simply
discard it. For instance, the design composed of one depthwise
convolution will be removed since its information field only
contains one channel area instead of the full channel space
from the standard convolution.

3) Efficiency: In order to achieve better parameters and
computation efficiency, we remove designs that include SKs
that do not contribute to the information field. Specifically,
there are two cases that could worsen the efficiency and
should be regarded as inferior designs: 1) it can be easily
verified that the size of the information field will never
decrease when passing through SKs in a design, thus in a
situation where the information field remains constant across
one kernel, the kernel is not helpful, even if the final size of
the information field is the same as the standard convolution;
2) it is also possible that an information field that is the same
size as the standard convolution is retained by a fraction of
SKs in a design; in this case, other kernels do not contribute
to the information field. Although other SKs can still enlarge
the information field to improve accuracy by increasing the
spatial dimension, in Section V-B, we argue that such a method
is not parameter-efficient. As a result, in terms of efficiency,
the designs in both cases contain non-contributing kernels,
so we can remove them from the original design space.

To effectively detect and delete such inferior designs within
the two cases, we introduce an early-stop mechanism during
the process to check the size of the information field above.
Specifically, as per the two cases, we check two things when
adding up the information field from the leftmost kernel in a
design: 1) we record the size of the information field before
entering the next kernel and compare it with the new size
calculated after that kernel. If the two sizes are the same,
we immediately mark the current design as inferior; 2) we
compare the new size of the information field with that of the
standard convolution. If the size is smaller, we will continue
to add up the information field from the next kernel; otherwise
we will skip to the next design.

With all aforementioned knowledge, we write a program
to automatically reduce the original design space. Also note
that other techniques to save parameters such as bottleneck
structure [1] appear to be complimentary to the SK approach,
which can be combined together to further improve parameter
efficiency while maintaining accuracy. To validate this idea
and also increase the chance to explore more efficient SK
designs, we take the bottleneck structure into consideration
when reducing the design space.

1The spatial size of the new information field can be calculated simply by
adding the corresponding kernel size minus 1. However, the calculation of
the channel size depends on whether the group convolution is used. If one
design does not contain any group convolution, the channel size will always
be equal to the number of input channels, otherwise the channel dependency
with regards to the input channels must be recorded for all output channels
every time a new SK encountered.

Finally, the original design space (41 + 42 + · · · + 46) can
be reduced to 4 different types of SK designs.2 In the next
section, we will present the 4 designs.

B. Final Sparse Kernel Designs

1) Depthwise Convolution+ Pointwise Convolution: Unlike
the standard convolution, which combines the spatial and
the channel information together to calculate the output,
the combination of depthwise convolution (DW) and pointwise
convolution (PW) splits the two kinds of information and deals
with them separately. The dependency of such a design is
depicted in Figure 3a, from which we can easily verify that
the size of the information field is the same as the standard
convolution.

2) Group Convolution+ Pointwise Group Convolution: The
combination of group convolution (GC) and pointwise group
convolution (PWG) can be regarded as an extension from
the design above, where group convolution is applied on the
pointwise convolution. However, simply using the pointwise
group convolution would reduce the size of the information
field on the channel dimension since the depthwise convolution
cannot fuse the channel information. To recover the informa-
tion field, depthwise convolution is replaced with a standard
group convolution, and channel permutation should be added
between the two layers. When using such an SK design,
we always assume the number of channels does not change
after the first group convolution. Figure 3b clearly shows
the information field of this design.

3) Pointwise Convolution + Depthwise Convolution +
Pointwise Convolution: Although two pointwise convolutions
do not ensure better efficiency in our SK scheme, the combina-
tion with the bottleneck structure can help ease the problem,
letting it survive as one of the last designs. Following the
common practice, we set the bottleneck ratio as 1 : 4, which
implies the ratio of the bottleneck channels to the output
channels. Figure 3c shows that the information field of such
a design is the same as the standard convolution.

4) Pointwise Group Convolution + Depthwise Convolution
+ Pointwise Group Convolution: The combination of two
pointwise group convolutions and one depthwise convolution
can also ensure that the information field is the same size
as the standard convolution. Similarly, channel permutation
is needed. The bottleneck structure is also adopted here to
achieve better efficiency. Figure 3d can verify the size of
the information field compared with the standard convolution.

IV. EFFICIENCY ANALYSIS

We notice that the conditions for the best efficiency of
different designs in our SK scheme do not always over-
lap. Thus to ease the pain for researchers to find the most
parameter/computation efficient designs based on their needs,

2During the process to eliminate the design space, we allow channel
permutation (including reshaping, matrix transposing and flattening back)
within the designs, and when a group convolution is encountered, we will
try all possible numbers of groups to calculate the size of information field.
As long as there is one group number that can pass the entire process, we will
keep the design. In case there are multiple group numbers passing the process,
we will consider them as the same design.
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Fig. 3. Data dependency of different SK designs. Here the spatial kernel size is 3× 3.

we analyze the efficiency for each of the designs in detail.
Specifically, we consider two scenarios which are frequently
encountered by researchers when applying SK designs: 1)
given the input and the output for a layer; 2) given the total
number of parameters for a layer. In the first scenario, we show
the parameter efficiency for a SK design by comparing the
total number of parameters before and after applying such a
design. In the second one, since the total number of parameters
is fixed, we compare the efficiency of different designs by
observing the greatest widths they can achieve. In this section,
the spatial kernel size 3× 3 is used unless otherwise stated.

A. DW + PW

1) Efficiency Given the Input and the Output: Given the
numbers of input and output channels C and F , the total
number of parameters after applying this design is 9C +C F ,
and the number of parameters for the standard convolution is
9C F . Therefore the parameter efficiency of such a method
is 1/F + 1/9, represented by the ratio of parameters after
and before applying such a design. Clearly, given C and F ,
the parameter efficiency is always the same.

2) Efficiency Given the Total Amount of Parameters: It can
be easily verified that given the total number of parameters,
the greatest width is reached when the best efficiency is
achieved. Thus, the condition for the best efficiency given the
total amount of parameters should be the same as the one in
which the greatest width is reached.

The total number of parameters P for the design can be
expressed as

P = 3 · 3 · C + 1 · 1 · C · F.

When studying the greatest width, we need to assume the ratio
between C and F does not change, thus the number of output
channels F can be written as F = α · C where usually α ∈
N
+. As a result, when P from the equation above is fixed,

the greatest width G (i.e., −9+√81+4αP
2α ) will also be fixed,

which indicates that the parameter efficiency is always the
same.

B. GC + PWG

1) Efficiency Given the Input and the Output: Similarly,
we use the ratio of parameters to show the parameter efficiency
of this design. Given C and F , the number of parameters after
using such a design can be written as 3·3· C

M ·C+1·1· C
N ·F =

9C2

M + C F
N where M and N represent the group numbers for GC

and PWG, respectively. Since the number of parameters for
standard convolution is 9C F , the ratio will become C

M F + 1
9N .

Notice that to ensure the same size of information field with
standard convolution, in any input group of the second layer
there should be at least one output channel from each one of
the output groups of the first layer, therefore M · N should be
less than or equal to the number of output channels from the
first layer, i.e., M ·N ≤ C . To further illustrate the relationship
between the best parameter efficiency and the choices of M
and N , we have the following theorem:

Theorem 1: With the same size of information field, the best
parameter efficiency is achieved if and only if the product
of the two group numbers equals the channel number of the
intermediate layer.

As per the theorem, the best parameter efficiency can be
achieved only when M · N = C . Thus the ratio will become
N
F + 1

9N . When F is a fixed number, N is the only variable

which can affect the efficiency. Since N
F + 1

9N ≥ 2
3

√
1
F , the best

efficiency can be achieved when N
F = 1

9N , or N =
√

F
3 .

2) Efficiency Given the Total Amount of Parameters: Given
the total number of parameters P for one design, both M and
N can affect the width of the network. As per Theorem 1,
the greatest C can be reached only when C = M · N . When
F = α · C , P can be written as

P = 3 · 3 · N · M · N+1 · 1 · M · α · M · N=M N(9N+αM)
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≥ M N · 2√9αM N = 6
√

αC
3
2

Given the number of parameters P , width C has an upper
bound when 9N = αM , which is also the condition for the
best efficiency. The greatest width G is ( P

6
√

α
)

2
3 .

C. PW + DW + PW

1) Efficiency Given the Input and the Output: Same as
before, given the number of input channels C , bottleneck
channels K and output channels F . After applying the design,
the total amount of parameters is reduced to 1 · 1 · C · K +
3 · 3 · K + 1 · 1 · K · F = K (C + F + 9). The number of
parameters for the standard convolution is still 9C F . Notice
that K = F/4, therefore the ratio can be further expressed as
C+F+9

36C . Clearly, given C , K , and F , such a design will also
result in a fixed efficiency.

2) Efficiency Given the Total Amount of Parameters: When
F = α · C and K = F/4, the total number of parameters P
will be

P = 1 · 1 · C · αC

4
+ 3 · 3 · αC

4
+ 1 · 1 · αC

4
· αC.

When P is fixed, the greatest width G is also fixed, i.e.,

−9α +√81α2 + 16α2 P + 16αP

2(α2 + α)
.

D. PWG + DW + PWG

1) Efficiency Given the Input and the Output: We use the
same method to evaluate parameter efficiency for this design.
First, the number of parameters after applying such a method
is 1 ·1 · C

M ·K+3 ·3 ·K+1 ·1 · KN ·F = K ( C
M + F

N +9) where M
and N represent the group numbers for the two PWGs. The
number for the standard convolution is 9C F . Since K = F/4
and as per Theorem 1, the best parameter efficiency can be
achieved only when K = M · N , and the ratio of parameters

can then be represented as
C
M+4M+9

36C . Thus given C , K , and
F , the best parameter efficiency can be reached by setting
C
M = 4M , or M =

√
C

2 .
2) Efficiency Given the Total Amount of Parameters:

Similarly, according to the Theorem 1, the greatest C can
be reached only when the number of bottleneck channels
K = M · N . Since F = α ·C and K = F/4, the total number
of parameters of one design P can be expressed as

P = 1 · 1 · 4N

α
· M N + 3 · 3 · M N + 1 · 1 · M · 4M N

= M N(
4N

α
+ 9+ 4M)

≥ M N(9 + 2

√
16M N

α
) = α

4
C(9+ 4

√
C)

Given the number of parameters P , the greatest width G exists
when αM = N .

V. MODEL TRANSFORMATION SCHEME

Although our SK scheme can generate SK designs with
various efficiency, it remains a question how to apply them to
construct a network under a resource constraint. Since people
usually rely on an existing model as a reference instead of
having a specific resource constraint, we develop a model
transformation scheme to utilize SK designs on existing mod-
els. According to different functionalities, the scheme can be
mainly divided into two parts. The first part (Reduce Parame-
ters/Computation) aims to reduce the parameters/computation
from a existing model while preserving the accuracy. The sec-
ond part (Improve Accuracy) aims to achieve higher accuracy
while using a similar amount of parameters/computation as an
existing model.

A. Reduce Parameters/Computation

Given an existing model, we reduce the parame-
ters/computation in it by replacing the standard convolution
with designs in our SK scheme since all of the designs in our
scheme can ensure a same-sized information field with the
standard convolution. Specifically, our scheme will start from
the first convolutional layer in the model and based on the layer
information (the numbers of input and output channels) and
the efficiency analysis (Section IV), calculate the efficiency for
different SK designs. Then, the design with the best efficiency
will be chosen as the replacement for the layer. Similarly,
for all the following layers, the corresponding SK designs are
chosen. The new model is then constructed based on these SK
designs. Notice that in practice, we usually do not replace the
first convolutional layer in a model since it does not contain
too many parameters.

B. Improve Accuracy

Improving accuracy in an existing model with a close
amount of parameters/computation is also an interesting topic
in the field. In Section V-A, we already show that by keeping
the network width (information field) and utilizing SK designs,
we can construct a new model with a similar accuracy and
much fewer parameters/computation compared to an existing
network. Also recall that in Section III, we observe that
the model accuracy is positively correlated to the size of
the information field. Thus, increasing the accuracy with a
close amount of parameters/computation could in turn enlarge
the information field with the saved parameters/computation
after using the SK methods. Among various approaches to
increase the information field, we adopt the most straightfor-
ward one in our scheme, which increases the width (the num-
ber of channels) of the network. Based on the analysis above,
the scheme to improve accuracy can be regarded as an exten-
sion for the one to reduce parameters/computation. However,
different from that scheme to reduce parameters/computation,
here we cannot increase the width of a layer solely based
on the information of that single layer since the change of
the channel numbers should always be consistent across all
adjacent layers. For example, considering two adjacent layers,
if we increase the width of the two layers separately based
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Algorithm 2 Accuracy Improving Upon an Existing Model
1: Take as input the layer information in the original model,

and we are supposed to generate the new layer informa-
tion to improve accuracy

2: Told ← 0
3: for L in layers do
4: if L is a convolutional layer then
5: Told ← Told + parameters_of _L
6: end if
7: end for
8: for L in layers do
9: if L is a convolutional layer then

10: Get the channel numbers C and F
11: for i in sparse_kernel_designs do
12: Calculate the parameter efficiency
13: end for
14: Replace L with most efficient SK design
15: end if
16: end for
17: Tnew ← 0
18: for L in layers do
19: if L is a convolutional layer then
20: Tnew ← Tnew + parameters_of _L
21: end if
22: end for
23: s ←

√
Told
Tnew

24: for L in layers do
25: if L is a convolutional layer then
26: Get the channel numbers C and F
27: Cnew ← s · C
28: Fnew ← s · F
29: Replace L with a layer based on Cnew and Fnew

30: end if
31: end for
32: return layers.

on the total number of parameters of each layer, it could
result in a situation where the output channel number of the
preceding layer is not equal to the input channel number of the
succeeding layer. Obviously, this would cause a problem in the
network since the output from the preceding layer would be
used as the input to the succeeding layer. Also notice that
when increasing the number of channels, since we do not
want to modify the overall network layout, we would like
to increase both the input and the output channels of a layer
proportionally. This means the ratio between the number of
the input and the output channels should always remain the
same. Taking all the circumstances above into consideration,
when designing the scheme, we introduce a scale factor s
for the width. It can be easily proved that for all the SK
methods mentioned in Section III, by increasing the width of
a layer by s times the total number of parameters/computation
for that layer, the width will become roughly s2 times of
the original layer. Therefore the scheme to improve accuracy,
which is also outlined in Algorithm 2, can be summarized as
follows. First we calculate the total number of parameters of

all convolutional layers Told in the original network. Second,
we adopt the scheme of reducing parameters/computation in
Section V-A on the original network. After that, the numbers
of channels for all layers will remain the same, but the
total number of parameters will be reduced to Tnew . Third,
to enlarge the information field we apply a same scale factor
s across the entire reduced network, then the total number of
parameters will become roughly s2 × Tnew . Last, since the
new network will have a similar amount of parameters as the
original one, we can solve for the value of s from the equation
Told = s2 × Tnew , and according to the value of s, channel
numbers for all convolutional layers can be calculated. Finally
a new network can be constructed.

VI. INTEGRATION WITH COMPILERS

After the analysis of our transformation scheme, the poten-
tial programming overhead of it is also an important aspect to
be considered. Realizing that replacing standard convolutions
with SK methods in existing neural networks will also incur
extra programming complexities, we integrate our algorithms
into a compiler prototype which could automatically calculate
the best SK design and finish the code transformation. Our
compiler prototype is designed based on the famous machine
learning framework TensorFlow and its most popular Python
interface.

Generally, as per the transformation scheme, our com-
piler prototype supports two modes. Mode 1 is to reduce
parameters/computation while preserving a similar accuracy,
and Mode 2 is to increase accuracy while using a close
amount of parameters/computation. The choice of the mode
is provided from users as an argument when running our
program. Both of the two modes will only demand the source
code from users. Then based on users’ inputs, the compiler will
automatically collect the information needed from the original
neural network and according to the information comparison
among different SK designs, it will find the best one. Finally,
the compiler will also automate the entire code transformation
process by replacing standard convolutions with the corre-
sponding best SK methods.

Despite the two different modes supported by the compiler
prototype, the main procedure can always be divided into
the following four steps. First, generate the AST from the
source code. Second, retrieve the information needed for
comparisons of different SK designs from the AST. Third,
based on comparison results, modify the corresponding AST
nodes. Last, convert the modified AST back to readable Python
code. Figure 4 shows the overview of our compiler prototype.
Sections below will illustrate the four steps in detail.

A. Generating the AST

In both of the two aforementioned modes, information about
the channel numbers for all convolutional layers is required
for future comparisons of different SK designs. However,
directly searching such information in the source code is not
applicable since programming languages are ambiguous by
nature. Fortunately, AST - which is widely used in compilers
to represent the abstract syntactic structure of source code - is
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Fig. 4. Overview of the compiler prototype. Red text indicates the kernel
size.

introduced to solve this problem. Once built, users can extract
information they need from the tree by simply traversing it.
In our compiler prototype, we adopt the API ast.parse() in the
python ast module to build an AST from source code stored
as a string. The root node on the tree will be returned by the
function and further steps can be realized on the tree.

B. Acquiring Information From the AST

According to the model transformation scheme in Section V,
the two modes may rely on the same information on the
AST. We find this information through pattern matching. The
code pattern the compiler looks for is the specific function
calls (tf.nn.conv2d()) representing the standard convolutions
in TensorFlow.

Specifically, we build a detection gadget by defining a
subclass of ast.NodeVisitor and overriding visit methods inside
it. ast.NodeVisitor is the primary tool for ‘scanning’ the tree,
and most importantly, it can ensure the same order of function
calls as in the source code. An AST node matcher (ast.Call)
is used inside the method visit_Call() to do the matching since
a function call will be represented as a Call node on the
tree, i.e., an instance of a subclass of AST module. Once the
code pattern is found, the eval() function is adopted to collect
channel numbers and parameter information of a layer from
the argument of tf.nn.conv2d(), representing the shape of the
kernel.

However, checking the code pattern for tf.nn.conv2d() has
some intricacies in practice. For the compiler to find specific
function calls correctly, an important case should be consid-
ered. Specifically, when tf.nn.conv2d() is wrapped inside other
functions, it will become hard to detect the code pattern.
To solve the issue, in our compiler prototype we build a
call graph by overriding another visit_FunctionDef() method.
Basically, the call graph will contain the function dependencies
and the relationships between arguments of different functions.
Therefore whenever a function call is found during the pattern
matching, the compiler is always aware of the potential
existence and the corresponding information of tf.nn.conv2d()
inside it.

C. Modifying the AST

With all the information collected from AST, calculations
will be conducted by our compiler prototype to determine
the best SK methods. Both of the two modes will involve
modifications of the AST nodes.

Similar to Section VI-B, we find all convolutional
layers for replacement through pattern matching. Here,
we build a detection gadget by defining a subclass
of ast.NodeTransformer instead of ast.NodeVisitor and over-
riding the method visit_Call() inside it. The method should
return the original node, a replacement node, or None to
remove that node from the tree. The AST node matcher
(ast.Call) is also used to do the matching. Once the layer is
found, the replacement can be realized by constructing a new
node inside the same method.

However, for the replacement to work soundly, the case in
which tf.nn.conv2d() is wrapped should also be considered.
Replacing tf.nn.conv2d() in this case is complicated since the
compiler cannot detect its explicit function call. To solve
this problem, we need the call graph built in Section VI-
B. Meanwhile we define another visit_Call() method to first
find all function call nodes through pattern matching and
then replace them with nodes containing several sub-nodes,
each of which represent a wrapped function call. Afterwards,
the compiler should be able to replace all the function calls
normally.

D. Converting Back to Python Code

Once we finish modifying the corresponding AST nodes,
the next step is to convert the modified AST back to the
Python code. Fortunately, with the help from some open source
packages or libraries, this step can be easily realized. In our
compiler prototype, we adopt the API unparse.Unparser() in
the unparse module for this step. The new Python code file
will be saved at the same directory as the original source code.
Users will be able to train and evaluate the new model in the
file same as before.

VII. EVALUATION

In this section, we first conduct an empirical study to
validate the idea regarding the information field and the final
accuracy from two aspects: 1) we show that the relationship
between the two properties exists by changing the number
of groups within one type of SK design; 2) we observe that
the same idea also applies to different SK designs given the
same network layout. Second, via experiments, we verify the
correctness of our SK scheme by showing that some designs
explored by the scheme can achieve performance superior
to the state-of-the-art network units. Last, we validate the
effectiveness of our compiler by applying it on several state-
of-the-art models and then comparing performances of the
generated networks along with other existing efficient models.

A. Empirical Study

1) Implementation Details: In this section, to ensure the
fair comparison, we adopt the same overall network layout
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TABLE I

OVERALL NETWORK LAYOUT. B IS THE NUMBER OF BLOCKS AT EACH
STAGE. AT THE FIRST BLOCK OF EACH STAGE EXCEPT THE FIRST

ONE, DOWN-SAMPLING IS PERFORMED AND THE CHANNEL NUM-
BER IS DOUBLED

for different SK designs. Following the common practice,
the design of the layout mainly follows two rules: 1) the
overall network contains several stages, and within each stage
the output feature map size is the same, and the layers have
the same number of filters; 2) at the beginning of each stage,
the feature map size is halved, and the number of filters is
doubled.

The overall network layout is shown in Table I. Identity
mapping [52] is used over each block. When building the
models, we can simply replace each block in the layout with
the SK designs mentioned in Section III or other state-of-the-
art efficient network units. Batch normalization (BN) [53] is
adopted right after each layer in the block and as suggested
by [48], nonlinear activation ReLU is only performed after
the summation of the identity shortcut and the output of each
block.

We evaluate our models on the ImageNet 2012 dataset [54],
[55], which contains 1.2 million training images and 50k
validation images from 1k categories. We follow the same data
augmentation scheme in [1], [52], which includes randomized
cropping, color jittering, and horizontal flipping. All models
are trained for 100 epochs with a batch size of 256. The SGD
optimizer is used with the Nesterov momentum. The weight
decay is set to 0.0001 and the momentum is 0.9. We adopt a
similar weight initialization method from [1], [56], [57]. The
learning rate starts at 0.1 and is divided by 10 every 30 epochs.
All results reported are single center crop top-1 performances.

2) Information Field Within One Type of SK Design: Recall
that in Section III we find an easily measurable property
behind various SK designs, the information field, that could
directly indicate the final accuracy, and observe that the model
accuracy is positively correlated to the size of the information
field. To verify this idea, we choose a bottleneck-like design
and conduct some comparisons by tuning different numbers of

TABLE II

COMPARISONS TO ILLUSTRATE THE RELATIONSHIP BETWEEN THE Infor-
mation Field AND THE MODEL ACCURACY WITHIN ONE SK DESIGN.

WE TUNE THE NUMBER OF GROUPS TO ACHIEVE DIFFERENT

PARAMETER EFFICIENCIES. WIDTH INDICATES THE NUMBER

OF INPUT CHANNELS TO THE FIRST STAGE OF THE NET-
WORK. NUMBERS WITHIN THE PARENTHESES REPRE-

SENT THE NUMBER OF GROUPS

groups for the intermediate group convolution. It can be easily
verified that given the same input, the change of the group
number in this design will not affect the size of the information
field in the output. We adopt the same overall network layout
in Table I. Results are shown in Table II.

Specifically, comparing the results in rows 2 and 5, we can
see that considering the same-sized input and output for each
layer by increasing the number of group from 2 to 32, more
than a half of the number of parameters can be saved with only
slightly decreased accuracy. Meanwhile, further comparison of
rows 5 and 6 indicate that if we apply the saved parameters
to increase the model width, the accuracy can be improved.
Analyzing the three results together, we can easily find that
the first two models contain the same-sized information field,
whereas the model in row 6 has a larger one, and the reported
accuracy is positively correlated to the size of it, which
coincides with our idea regarding the information field. Also
since both of the two models in rows 5 and 6 contain the
same amount of parameters, overall network layout, and type
of SK design, the accuracy improvement only comes from the
increased width (information field). A similar phenomenon can
also be found via comparison of the results in rows 1 and 2.

We also investigate different usages of parameters. The com-
parison of results in rows 3 and 4 shows that increasing model
width results in higher potential for accuracy improvement
than increasing depth. Such results also suggest that the size
of information field could play a more important role in the
model accuracy. Additionally, results in Table II can further
explain the correctness of the SK design (PW + DW + PW)
in Section III-B3. It directly adopts depthwise convolution in
the middle since it can not only ensure an information field
equal to other group numbers, but is also the most parameter-
efficient choice.

3) Information Field Across Different SK Designs: We
further validate the idea of information field across different
SK designs. Specifically, we compare SK designs mentioned in
Section III-B. Results are reported in Table III. As mentioned
in Section III-B, all designs will share the same-sized informa-
tion field given the same input. For fair comparison, we set a
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TABLE III

COMPARISONS TO ILLUSTRATE THE RELATIONSHIP BETWEEN THE Infor-
mation Field AND THE MODEL ACCURACY ACROSS DIFFERENT SK

DESIGNS. WIDTH INDICATES THE NUMBER OF INPUT CHANNELS

TO THE FIRST STAGE OF THE NETWORK. NUMBERS WITHIN

THE PARENTHESES REPRESENT THE NUMBER OF GROUPS

close amount of parameters for different designs and compare
the final accuracy. From Table III, we can see that due to
the differences of parameter efficiency among various SK
designs, models with different widths can be constructed,
and the accuracy is always positively correlated to the width
(size of the information field), which again coincides with
our previous idea. Meanwhile, the comparison between rows
1 and 2 shows that (DW + PW) could construct a model with
a width (information field) similar to the standard convolu-
tion using less than 1/10 parameter consumption, while still
maintaining similar accuracy. This comparison also indicates
the importance of the information field to the final accuracy.
Notice that the results here do not necessarily indicate that
one type of SK design is always better than the other in
terms of the parameter efficiency since - as per the analysis
in Section IV - the efficiency also depends on other factors
like the number of groups. For example, considering the same
number of parameters and network layout, there could be a
combination of group numbers M and N such that the network
with the design (GConv(M) + PWGConv(N)) is wider than
that of (DW + PW).

B. Effectiveness of the Sparse Kernel Scheme

We validate the effectiveness of our spare kernel scheme by
comparing the performances of the SK designs to the state-
of-the-art network units. All these units chosen can not only
achieve state-of-the-art accuracies but also have a relatively
small model sizes. Table IV shows the results. Specifically,
for fair comparison, we use the same network layout as
shown in Table I and replace blocks in it with corresponding
designs or units. The model size around 11.0M is selected,
as it is the size that different models (e.g., Xception, ResNeXt
and ShuffleNet) can be easily configured to simultaneously.
Results in rows 6 and 7 show that the SK designs found by
our scheme can yield better accuracy with a smaller model
size, which then validates the effectiveness of the scheme.

TABLE IV

COMPARISONS WITH STATE-OF-THE-ART NETWORK UNITS. WIDTH INDI-
CATES THE NUMBER OF INPUT CHANNELS TO THE FIRST STAGE OF THE

NETWORK. NUMBERS WITHIN THE PARENTHESES REPRESENT THE

NUMBER OF GROUPS. ALL SETTINGS ARE RESTORED FROM

THE ORIGINAL PAPERS. IN PARTICULAR, THE BOTTLENECK
RATIO IS 1 : 4 FOR RESNET, AND RESNEXT ADOPTS A

CARDINALITY OF 16 AND A BOTTLENECK RATIO OF

1 : 2. SHUFFLENET USES A GROUP NUMBER OF 4

Fig. 5. Comparisons of models before and after the transformation. Width
indicates the number of output channels from the first convolutional layer in
the network. LOC represents the total line of code used for the model graph.

Also notice that the choices of group numbers used in the
SK designs are chosen to help accommodate both the similar
model size and the overall network layout, which may not be
the most efficient ones that are expected to result in a wider
network (larger information field) with better accuracy under
the same limitation of parameters.

C. Effectiveness of the Compiler Prototype

To validate the effectiveness of the compiler prototype,
we choose 4 different state-of-the-art models: AlexNet, VGG-
16, ResNet-18, and ResNet-34. Each model will be applied
with two different modes of the compiler. We also report
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performances from some existing efficient models for com-
parison. Results are shown in Figure 5.

From Figure 5, we can see that generally, all models using
Mode 1 will have slightly decreased accuracy due to the
reduction of parameters, while models with Mode 2 will
show consistent accuracy improvement thanks to the increased
model width (information field). In particular, ResNet-34 with
Mode 1 can achieve better accuracy than all existing efficient
models with much less parameter consumption. Such results
validate the effectiveness of our compiler prototype and also
coincide with our idea regarding the information field.

Looking at the number of parameters from different models,
we can observe that by using Mode 1, AlexNet and VGG-
16 can only reduce a small amount of parameters while
ResNets show a significant parameter reduction. We believe
this huge difference is caused by the fully-connected (FC)
layers. Both AlexNet and VGG-16 have three FC layers
which consumes much more parameters than the convolutional
layers. However, ResNets only have one FC layer, and its
parameters take up a small portion of the entire network.

Comparisons of the speed-ups from different models show
that the speed-up of SK designs is not scalable to the parameter
reduction. We argue that this is due to the lack of optimized
implementations of SK designs in TensorFlow library, there-
fore the codes of new models generated by our compiler
prototype may not guarantee the best run-time performances.
Future optimization on the implementations of SK designs
should expect better performances.

VIII. RELATED WORK

A. Pruning

Pruning [4], [6]–[19] is used to compress a model while
preserving the accuracy by reducing redundant weights, net-
work connections or channels in a pre-trained model. However,
sometimes pruning can face difficulties when deploying on
hardware like GPUs since, as indicated in [4], some pruning
approaches like [6] may only be effective when the weight
matrices are sufficiently sparse.

B. Quantization

Quantization [20]–[32] is another method to compress the
model without losing the accuracy; it reduces the number of
bits required to represent the weights. However, this tech-
nique will require specialized hardware support for the actual
speedup on device.

C. Low Rank Approximation

Low rank approximation [33]–[43] uses two or more matri-
ces to approximate the original matrix values in a pre-trained
model. For example, one can decompose a pre-trained 4D
kernel into the product of two 3D matrices. By replacing the
original matrix with more low-rank matrices, some parame-
ters/computation can be saved. However, since the decompo-
sition is just an approximation of the original matrix values,
maintaining a similar accuracy will always need additional
model re-training.

IX. CONCLUSION

In this paper, to facilitate the direct deployment of deep
learning models on 5G edge devices, we first present an SK
scheme to craft an effective SK design by eliminating the large
design space from three aspects: composition, performance,
and efficiency. During the process to reduce the design space,
we find a unified property named the information field behind
various designs, which can directly indicate the final accuracy.
Meanwhile, we give the detailed efficiency analysis for the
final 4 designs in the scheme. Second, based on the analysis,
we propose a model transformation scheme to utilize the
SK designs on existing models. Last, considering the extra
programming overhead and the expert knowledge required
by the model transformation scheme, we develop a compiler
prototype to automate the entire process. The empirical studies
show that under the same overall network layouts models
composed of the sparse kernel designs searched by our search
scheme can beat the state-of-the-art models in terms of the
accuracy and the efficiency. And the model transformation
scheme can easily improve either the model accuracy (the
same number of parameters) or the efficiency (the same
accuracy) upon existing state-of-the-art models.

For future studies, we plan to propose a more accurate
efficiency analysis by adopting a better representation of the
computational efficiency such as the runtime instead of the
computational FLOPs. However, measuring the actual runtime
for each design takes ample time, which contradicts the goal of
the paper. Recent studies show that it is possible to utilize the
power of the machine learning to predict the actual runtime by
training a neural network [59]. Besides, we are also interested
in predicting the runtime on various platforms and devices
both efficiently and accurately.
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