IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 20, 2025

1023
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Abstract—Model Inversion Attacks (MIAs) pose a certain
threat to the data privacy of learning-based systems, as they
enable adversaries to reconstruct identifiable features of the
training distribution with only query access to the victim model.
In the context of deep learning, the primary challenges associated
with MIAs are suboptimal attack success rates and the corre-
sponding high computational costs. Prior efforts assumed that
the expansive search space caused these limitations, employing
generative models to constrain the dimensions of the search
space. Despite the initial success of these generative-based solu-
tions, recent experiments have cast doubt on this fundamental
assumption, leaving two open questions about the influential
factors determining MIA performance and how to manipulate
these factors to improve MIAs. To answer these questions, we
reframe MIAs from the perspective of information flow. This new
formulation allows us to establish a lower bound for the error
probability of MIAs, determined by two critical factors: (1) the
size of the search space and (2) the mutual information between
input and output random variables. Through a detailed analysis
of generative-based MIAs within this theoretical framework,
we uncover a trade-off between the size of the search space
and the generation capability of generative models. Based on
the theoretical conclusions, we introduce the Query-Efficient
Model Inversion Approach (QE-MIA). By strategically selecting
an appropriate search space and introducing additional mutual
information, QE-MIA achieves a reduction of 60% ~ 70% in
query overhead while concurrently enhancing the attack success
rate by 5% ~ 25%.

Index Terms—Model inversion attack, data privacy, deep
neural network.
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I. INTRODUCTION

EEP learning algorithms have emerged as a transfor-

mative technological breakthrough, finding widespread
applications across diverse domains such as medical signal
processing [1], [2], smart payments [3], and autonomous
driving [4], [5]. However, the rapid expansion of data scale
has raised widespread concerns regarding data security and
privacy. Beyond the well-established risks of data leakage dur-
ing collection and transmission, recent research has unveiled
a novel category of data leakage risk known as memorization-
based data leakage [6], [7], [8]. This risk becomes apparent
during the deployment phase of deep learning models, where
malicious users exploit the victim model by querying it to
reconstruct characteristics of the training data at different
levels.

Model Inversion Attacks, among these memorization-based
attacks, aim to generate samples revealing privacy features of
the training data [6]. For instance, a malicious user might
reconstruct images closely resembling the target class in
the training data, as illustrated in Fig 1. Fredrikson et al.
[6] pioneered Model Inversion Attacks (MIAs) on simple
machine learning models and shallow neural networks. They
first defined the model inversion process as an optimization
problem that maximises the output probability of the target
class, and then proposed a gradient-based approach to solve
this problem iteratively. However, this approach suffers from
low attack success rates (and the corresponding high com-
putational costs) when attacking more complex deep neural
networks.

To perform efficient model inversion attacks under deep
learning scenarios, subsequent research assumes that it is the
expansive search space of MIAs that leads to poor attack
performances [9], [10]. Based on this fundamental assumption,
these studies concentrated on refining MIAs by narrowing the
search space. Zhang et al. [9] first introduced the Generative
Adversarial Network (GAN) [11] between the optimization
target and the input of the victim model to narrow the search
space of MIAs. By optimizing the input variable of the GAN
instead of directly manipulating the images, their method
significantly reduced the search space by over a factor of 1000.
The success of GAN-based solutions inspired the following
researchers to leverage more powerful generative models to
further improve MIA. Consequently, variations of GAN-based
methods become the major research point of recent studies
(e.g., a-GAN-based MIA [12], StyleGAN-based MIA [10]).

Despite the initial success of existing generative-based
MIAs, there are several problems left unexplored. First, some
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Fig. 1. An illustration of Model Inversion Attacks. The attacker reconstructs

identical features of training data by iteratively querying the victim model
and updating inversion examples, resulting in privacy leakage.

latest experiments results have cast doubt on the fundamental
assumption of existing methods (e.g., the StyleGAN-based
MIA [10] has a larger search space than the WGAN-based
MIA [9] as well as a better attack performance). Second,
even the state-of-the-art solution requires hundreds of attempts
to get valid results [10], resulting in unacceptable computa-
tional overhead. These problems motivate us to rethink the
relationship between the size of search space and the attack
performance of MIAs. In other words, there is a lack of formal
theoretical analysis of the influencing factors of MIAs and it
is meaningful to find more potential optimization directions
for MIAs.

In this paper, we tackle the aforementioned challenges by
answering two major questions: (1) What factors determines
the attack performance of MIAs? (2) How to manipulate
these influencing factors to enhance MIAs?

Specifically, we conduct a comprehensive theoretical anal-
ysis of MIAs from an information flow view. First, we
reformulate the inversion process using Fano’s inequality [13].
This reformulation helps us establish a lower bound for the
error probability in a one-time inversion attack. By utilizing
this bound alongside an anticipated success probability, we
can calculate the expected number of attempts required to
achieve a valid result. Subsequently, we assess previous MIA
approaches within our reformulated framework to identify
potential optimization directions. We have two key obser-
vations: (1) narrowing the search space is not universally
advantageous because there exists a trade-off between the
dimensions of search space and the generation capability;
(2) the output score will no longer provide useful information
after attacking and there is a need of additional inductive biases
for results selection. In light of these observations, we imple-
ment a query-efficient MIA on the basis of existing methods
by simply choosing a proper search space and introducing the
inductive bias about the inference logic.

In addition, we analyze how different model settings influ-
ence the vulnerability of deep learning models against MIAs.
From the perspective of information flow, we prove that some
specific kinds of deep learning models are more susceptible to
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MIAs, e.g., face recognition models that use hidden features
to make decisions.

Our main contribution can be summarized as follows:

e We reformulate the model inversion process using infor-
mation theory and demonstrate a lower bound for attack
error probability, which provides a deeper understanding
of the low success rate of model inversion attacks.

e Following the theoretical analysis, we demonstrate how
different model settings influence the success of model
inversion attacks and point out that sometimes robustness-
enhancing methods (e.g. adversarial training) may intro-
duce additional risk of model inversion attacks.

e On the basis of theoretical analysis, we find potential
optimization directions for model inversion attacks and
propose a query-efficient model inversion approach, QE-
MIA.

e Experiments on three real-world datasets and multiple
target models show that QE-MIA significantly reduces
the attack overhead and enhances the attack success rate
under complicated scenarios.

The rest of this paper is organized as follows: Sec II
introduces the risk of privacy leakage in deep learning appli-
cations and the use of information theory in deep learning
algorithms. We then provide the theoretical foundations and
theoretical proofs of our approach in Sec III. Sec IV describes
the proposed approach QE-MIA in detail. Subsequently, we
evaluate and compare QE-MIA with previous methods in
Sec V. Finally, Sec VI summarizes the research and propose
potential future work.

II. RELATED WORK
A. Privacy Leakage Risks in Deep Neural Networks (DNNs)

With the widespread application of deep learning models
in security-critical domains, the importance of ensuring the
security and privacy of training data is increasing. Extensive
work has investigated the security of data during collection
and transmission [14], e.g., federated learning [15], [16] for
data privacy protection during model training. In the other
part of the model lifecycle, namely the deployment process
of models, there are much fewer considerations for data
privacy, since it is difficult for an attacker to get direct access
to the training data. However, recent studies have shown
that even after extensive training, deep neural networks can
store information from the training data individually without
obfuscation [7], [8], [17]. Based on this property, malicious
users can extract privacy-sensitive information from training
data from different perspectives, these memorization-based
attacks can be categorized into three classes, Membership
Inference Attacks, Model Inversion Attacks, and Training Data
Extraction Attacks.

1) Membership Inference Attacks: The Membership
Inference Attack is one of the most widely-explored
memorization-based attacks, it aims to identify the samples
appearing in the training set from the test data [7], [18], [19],
[20]. The basis of the membership inference attack is that
deep learning models respond slightly differently to training
and test samples [7]. Therefore, an attacker can train a binary
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TABLE 1
THE SETUP OF EXISTING MIA RESEARCHES

Attack Settin, .

Method Target Model = Target Data White-Box BluﬁvBox Generative Method
MI [6] LR,SNN Image v

GMI [9] DNN Image v v
KED [27] DNN Image v v
VMI [28] DNN Image v v
Mirror [25] DNN Image v v
PPA [10] DNN Image v v
GraphMI [24] GNN Node v v
UMI [23] DNN Image v v
S-MIA [22] DNN Image v v

classification model to capture this difference for recognizing
members and non- members.

2) Training Data Extraction Attacks: Recently, with the
development of large language models (LLMs), a new type of
memorization-based attack, Data Extraction Attacks [8], [17],
[21] are proposed to recover training data from the semantic
level. Training Data Extraction Attacks consist of two steps,
the attacker first generates extensive test samples using the
victim model following the maximum likelihood strategy and
then utilizes these samples as a test dataset to perform mem-
bership inference attacks against the victim model to determine
which samples have appeared in the training dataset [17].

3) Model Inversion Attacks: Fredrikson et al. [6] were
among the first to define the concepts of model inversion
attacks, as well as to propose basic countermeasures. The
attacker reconstructs privacy-sensitive features about the train-
ing class by solving an optimization problem that maximizes
the output scores of the target class. However, the initial
gradient-based approach for the optimization problem can only
handle simple machine learning models (e.g. linear regression
models and decision trees) and fails to provide meaningful
results when dealing with more complex models such as deep
neural networks. The following studies attribute the problem to
the high dimensions of the search space and attempt to narrow
the search space via generative approaches. Zhang et al. [9]
introduce the Generative Adversarial Network (GAN) [11]
to the inversion process and narrow the search space from
the value space of an input image to the value space of an
input vector of GAN. Later studies explored the effectiveness
of different generative models for inversion attacks (e.g.,
StyleGAN [10]).

Some recent studies apply model inversion attacks under
black-box conditions [22], [23] or on Graph Neural Networks
(GNNs) [24]. Nevertheless, even the state-of-the-art inversion
methods require thousands of attempts to get valid results,
making them less practicable under query-limited scenarios.
Meanwhile, some inconsistencies with existing hypotheses
appear in the latest researches, for example, enlarging the
search space may result in higher attack success rates [10],
[25], [26]. These inconsistencies call for further theoretical
analysis of the factors influencing model inversion attacks.
Tab I lists the setup of several existing MIA research.

In this paper, we focus on model inversion attacks to analyze
and improve model inversion attacks from the perspective of
information flow.
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TABLE I
NOTATIONS USED IN THE PAPER

Notation  Meaning

Sets of real data and corresponding labels
Sets of training data and corresponding labels
Set of real reconstructed examples
Parameterized mapping function

Loss function

Samples from X, Y, X, Y

Weight parameter

Mutual information

Expectation of a random variable
Distance evaluation function

Information entropy

Error probability

Generative model

Input variable of generative models
Probability that 3Z € Z,X = G(Z)

BRI K
e = =

NQD I ES

—~

v
ks

B. Information Theory in DNNs

In the field of deep learning theory, information-theory-
based interpretable methods have been one of the important
directions in the last decade. Tishby and Zaslavsky [29] first
use information bottleneck theory to analyze the training
process of DNNs and prove that any DNN can be quantified by
the mutual information between the layers and the input and
output variables. Schwartz-Ziv and Tishby [30] further investi-
gate the role of hidden layers in DNNs and the interpretation
of properties in the training process from an informational
perspective.

Following the theoretical analysis, several studies apply
information theory to evaluate and enhance the security of
DNNs [31], [32]. However, these researches mainly focus on
the forward information flow in the inference process (namely
the information flow transmitted from the input example to
the output probabilities of a DNN), leaving the backward
information flow (the information flow transmitted from the
output probabilities back to the input example) unexplored.

From the perspective of model inversion defense,
Wang et al. [33] establish connection of attack success rate
between the mutual information between input examples
and output probabilities empirically. They further improve
the robustness of DNNs against MIAs by narrowing the
mutual information. However, the exact theoretical relationship
between model inversion and mutual information remains
unclear.

III. PRELIMINARY AND THEORETICAL ANALYSIS

In this section, we provide a basic definition and theoretical
analysis of the factors influencing the model inversion process
based on information theory. Table II lists the notations used
in the paper and their meanings.

A. Model Inversion Attack: Definition

1) Supervised Learning: Consider the generalized super-
vised learning setting, we can formalize a supervised learning
task as a six-tuple (X, Y, X, Y, F, £), where X is the set of real
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data following an unknown distribution, Y is the set of corre-
sponding labels of real data, X and Y denote the set of samples
sampled from X and the set of corresponding learning targets
sampled from Y, F is a parameterized mapping F : X — Y
which represents the learning model, the loss function L is a
mapping L : F(X)oY — R.

A supervised learning process can be represented by the
following optimization problem:

[£(X,Y)] (1)

argmin E
F XeX,YeY
From the perspective of information bottleneck [29], F can
also be considered as a series of parameterized mappings F :
X->S-85...058S, > Y, where {S;,S,,...,S,} denote the
latent features of X. The training process can be represented
by the following optimization problem:

WMIEZWWQMM] 2)
F XeX,YeY

where I(.,.) denotes the mutual information, «; is the weight
parameter determined by model architecture and settings.
Eq 2 indicates that the training process of the model is to
find a mapping to optimize the information compression and
classification accuracy.

2) Model Inversion: Without loss of generality, we consider
supervised learning in image classification scenarios, where J
denotes a deep learning model trained on the image dataset X.
Model inversion attacks aim to generate synthetic i images that
reveal information about the training dataset X. Let X denote
the set of images reconstructed by the attacker, MIA can be
formalized as

argmin  E [D(X, X)] 3)

e XeX XeX
where D evaluates the difference between two image sets.
However, since the attacker has no access to X, it is not practi-
cable to directly perform an attack by solving this optimization
problem. Fredrikson et al. [6] adjust the optimization goal by
maximizing the output score of the target class, that is,

argmin = B [L(FX),Y)] “)

e XeR,YeY

Eq. 4 is an intuition based on Eq. 1 that samples with
similar output scores should be similar to the training samples.
Nevertheless, according to Eq. 2, this intuition is questionable
because the mutual information between the output scores and
the input samples continues to decrease during training, which
means it is difficult to build a solid connection between the
similarity of output scores with the similarity of input samples.
In practice, methods based on Eq. 4 fail to produce valid
results when attacking more complex deep neural networks
[6]. Therefore, the first key question in MIAs is:

Q1: What factors determine the low success rate of model
inversion attacks?

Subsequent studies use the high dimensionality of the search
space to answer this question empirically [6], [9], [28], which
does not reveal all deterministic factors of the success rate of
model inversion attacks. In this paper, instead, we answer this
question from the perspective of information theory.
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B. Error Probability of MIA: A Lower Bound

According to Fano’s inequality [13], for any estimator X
that satisfies X — Y — X, we have:

H(P,) + P.loglX| > HXX) > H(X|Y) (5)

where H denotes the information entropy, P, = Prob{X #
X}, X is an estimate of X, X is generated by a certain mapping
function X = G(Y), and X denotes the value space of X.

Considering the inversion process of the victim classifier
JF, use random variables X, Y,f( to represent input examples,
output probabilities, and inversion results, respectively. Then
X — Y can represent the inference process of the classifier
F and Y — X represents the inversion process. Under this
definition, P, = Prob{X # X} is the error probability of the
inversion result, which provides a lower bound for a one-time
inversion attack. Specifically, we have the following theorem:

Theorem 1: Denote the original example as X € X, the
target model as F, Y = F(X) denotes the output score. X¢ =
{(XiIVX; € X, |IX;, Xl|lg < €}, n = |X¢|. Then the error probability
of a one-time model inversion attack p. satisfies:

. IX;Y) + 1
&ZEO‘ logiX ) ©

where 1(X;;Y) denotes the mutual information of X; and Y.
Proof: According to the definition, |X| > 2 and H(P,) < 1
(H(P,) = 1 when P, = 0.5). Therefore, Eq. 5 can be weakened

to
HX|Y)-1
p,> HXY) -1 7
loglX|
According to the definition of mutual information, Eq. 7
can be transformed to:

P, > HX)-IX;Y)-1 )
log[X]

For the model inversion scenario, X obeys a uniform
distribution since each sample point takes place with the
same probability in the search space. Under this assumption,
H(X) = log|X], thus we have:

IX;Y)+1

P, 21 logI%] )
For model inversion tasks, the goal is to reveal semantic
features of the training data rather than to reconstruct the
training example at the pixel level. For this purpose, any X;
satisfying ||X;, X]||; < € will be considered as a successful
attack. Therefore, the lower bound of the error probability for
a single attack can be calculated by Eq. 6. O
Fig. 2 gives an overview of the overhead of the com-
plete inversion process, where the query effort determines the
number of required queries per attempt and the error rate

determines the number of required attempts.

C. Quantification: An Example

Given Eq. 6, we can answer Question 1. For better under-
standing, we use a real-world attack as an example. For a
deep recognition model trained on MNIST, we have X €
[0,255]%8%28, Xiep = 1 (i.e., 256 different possible values in
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Fig. 2. Overview of the overhead of model inversion attacks, where the query
effort determines the number of queries per attempt and consists of forward
and backward overhead. The error rate determines the expected number of
required attempts.

total for a pixel point). Meanwhile, I(X;Y) can be estimated
using information bottleneck theorem [30], for the classifier
in the paper, I(X;Y) =~ 1. Therefore, the error probability
of a once-inversion attack against the MNIST classifier is
approximately equal to 0.99984", where n denotes the number
of samples in the critical domain of X.

While specific model architectures and training datasets will
affect the value of the mutual information [30], similar trends
exist in most cases. For datasets that have larger scales, the
lower bound of the error rate will be very close to 1, which
leads to a low success rate for model inversion attacks. Using
information theory, the answer to question 1 is:

Al: The success rate of model inversion attacks is jointly
determined by the scale of the search space and the mutual
information between input samples and output scores.

D. Generative Solutions

Recent MIA methods introduce the GAN structure to narrow
the search space and generate semantic-meaningful images.
Denote the GAN as G and the input variable of the GAN as
Z, then the optimization problem in Eq. 4 can be reformulated
as:

argmin = E [L(F(G(Z)),Y)] (10)
7 ZEZ,

YeY,

Despite the success of GAN-based solutions in practice,
there are still several concerns left unexplored:

Q2: Is the effectiveness of generative methods certified or
what is the premise?

Following Question 1 and Answer 1, we further answer the
above questions using the following corollary:

Corollary 1.1: Let P,(X) = Prob{3Z € Z,X = G(Z)}, then
after introducing GAN-based solutions, P, satisfies:

P.>[] (1 _px)x &Y+ 1)

11
log1Z] (b

i=1
Proof: GAN-based methods assume that X can be repre-
sented by G(Z). Then P, satisfies:

P> ] (1 - —I(Zl;;?zr 1)
3ZeZ.X=G(Z)

When 3Z € Z,X = G(Z), we have log|Z| = log|G(Z)|
because the GAN is a one-to-one mapping model. Let P,(X) =
Prob{dZ € Z,X = G(Z)}, then after introducing GAN-based
solutions, P, can be bounded by Eq. 11. O

12)
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According to Data Processing Inequality [34], I(Y;X) <

I(Y;G(Z)) = [(Y;Z). So when AZ € Z,X = G(Z):
IX;Y)+1 S 1(Z;Y)+ 1
loglX| log|Z|

when P, = 1, according to Eq. 13, the lower error bound of
generative methods is lower than baseline methods defined by
Eq. 4, which means the expected success rate of generative
methods is strictly higher than baseline methods when X can
be reproduced by G(Z) with 100% probability. However, P,
depends on a variety of factors and is usually less than 1 in
practice. Consequently, the answer to Question 2 is as follows:

A2: The effectiveness of generative methods is not certified.
There is a trade-off between the generation capacity of the
generative model and the scale of search space.

13)

E. Model Vulnerability

Besides the exploration of different model inversion attacks,
it is also natural to wonder about the vulnerability of different
deep-learning models. On the basis of Eq. 6, we further
demonstrate that several specific types of models are more
vulnerable to model inversion attacks in this section.

Consider the hidden Markov chain inference process in
Eq. 2. According to the Data Processing Inequality [34], we
have I(X,X;) > ... > I(X,X,) > I(X,Y). We have demon-
strated that the increment in mutual information will decrease
the lower error boundary in Eq. 6. Then it is straightforward
that using the hidden features to guide MIAs will increase the
attack success rate.

In practice, face recognition models are usually pre-trained
on a large-scale open-source dataset while deployed on a rather
small set of registered identities (e.g., the employees of an
institute). Therefore, deployed face recognition models often
use the cosine similarity between the hidden features of input
images and registered ones. This will make deployed face
recognition models more vulnerable to model inversion attacks
according to our analysis.

More importantly, adversarial training, which is often used
to enhance model robustness, will increase the mutual informa-
tion between the training samples and the output probabilities
[32], [35] and thus may introduce additional risk about model
inversion attacks.

IV. QUERY-EFFICIENT MODEL INVERSION ATTACK

Following theoretical analysis, we improve model inversion
attacks from two directions and propose the Query-Efficient
Model Inversion Attack (QE-MIA) in this section.

A. Search Space Selection

Eq. 11 and Answer 2 show that there is a trade-off between
the generation capacity of the generative model and the scale
of search space. Then finding the optimal search space will
strictly reduce the lower error bound. Existing generative
model inversion attacks [9], [10] concentrate on reducing the
scale of the search space while neglecting the generation
capacity of generative models on the search space. This moti-
vates us to perform search space selection before performing
model inversion attacks.
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Fig. 3. High-level overview of QE-MIA. In the first phase, the attacker generates a series of inversion examples by optimizing the latent variables of the
generative model. In the second phase, the attacker performs a voting-based ranking of the results, selecting the more robust example as the final result.

To achieve this goal, a basic problem is how to quantify
the generative capacity of a generative model given a spe-
cific search space. Some previous studies about embedding
images to the hidden layers of the StyleGAN [36] provide
a practical solution. For a certain test example X, we can
find a corresponding Z which satisfies D(X, G(Z)) < € using
gradient-based updating, where € is a small constant value.
The iterations cost by the process can represent the overhead
of generating X using G. Therefore, given a set of examples
X and a certain interation number N, we can estimate the
generation capacity of P, using the following equation:

P,= E Prob[lter(G,Z1,X) < N] (14)
XeX,ZeZ

where Z is the given search space. Then we can estimate the
lower error bound of different generative models on different
search spaces.

We perform a toy experiment on the Stanford Dogs [37]
dataset to compare the estimated P,, I"(Z,Y), and P, of differ-
ent generative models on different search spaces. The WGAN
[11] and StyleGAN2 [38] are trained on the AFHQ dataset
[39], following [36], we randomly select 1000 examples from
the Stanford Dogs dataset and embed them into different latent
layers of the two generative models. We set the max number of
iterations as 50 to keep up with the setting for model inversion
attacks. Then we use a pre-trained classification model on
the Stanford Dogs dataset to evaluate the embedding success
rate and use the success rate as an estimation of P,. Then
we randomly generate 1000 samples for each optimization
target, and estimate the mutual information /*(Z, Y). Given the
estimated P}, and [*(Z,Y), we can calculate the estimated P;.
Tab III lists the results, where 1 — \’/}Tj is positively correlated
with the attack success rate. Denote the 1 — \’/P_Z of WGAN
by o, we find that performing an attack on W+ achieves the
best attack success rate.

We also provide an intuitive explanation of this observation
from the perspective of searching. Fig 4 illustrates how dif-
ferent optimization variables influence the attack results: (1)
Optimizing Z will fall into local minima with a high probabil-
ity because the distribution bias between Z and real samples,
a small perturbation on Z may cause a significant difference in
generated images. (2) It is easier to find a global optimum for
W than Z because W has a more similar distribution with real
samples [38]. However, since the number of dimensions of W

TABLE III

THE ESTIMATED P, I"(Z,Y), AND P, OF DIFFERENT GENERATIVE
MODELS ON DIFFERENT SEARCH SPACES. kK DENOTES THE
EFFECTIVE PRECISION OF THE SEARCH SPACE

Model Search Space log|Z| P} I*(Z,Y) 1—- /P
WGAN Z klog128 0053 <le—4 o
Z klog512 0.145 <le—4 2.130
StyleGAN2 w klog512 0429 <le—4 5.980
W+ klogl5*512  0.714 <le—4 6.930
. cm O start Point A Non-targets
- @ EndPoint M Targets
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Fig. 4. An overview of how different search spaces influence the attack
effectiveness.

is still much smaller than that of real samples, several non-
targets will share the same projection on W as target samples,
which leads to a decrement on P,. (3) Compared with W,
W+ has more dimensions and thus contains more detailed
information about the generated images. By optimizing W™,
we balance the trade-off between the dimension of search
space and the representation capabilities of the optimization
variable.

B. Result Sorting

To get valid inversion results given the high error probability
of a single model inversion attack, attackers tend to make
multiple attempts. After several inversion attempts, the attacker
will get a set of reconstructed images X = {Xl,Xz, . ,Xn}.
Then how to further evaluate these results and filter unsuc-
cessful ones is another important problem in MIAs. Previous
work [10], [28] performs random image transformations on
generated images and selects images with more robust scores
as the final results. However, these results sorting algorithms
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Fig. 5. An example of the mismatch between the image salient region and
the decision salient region.

are query-consuming. Consequently, we reanalyze the result
sorting process and propose a query-efficient solution.

Assume these reconstructed images are sampled from a
certain set X and denote the corresponding set of Y as ¥,
we can update Eq. 9 as follows:

IX;Y)+1

P, > 1 =
log[X]

e 2 (15)
where I(X;Y) ~ 0 because the Y corresponding to each X is
the same (i.e., Y converges to a constant value with probability
of about 100%). Then the lower bound of error probability is
only determined by log|X|, which means the random variable Y
will not provide any additional information for results filtering
after attacking. This observation motivates us to introduce
additional information for results sorting.

Looking back into the model inference and inversion pro-
cess X—>Y — X, attackers introduce an important inductive
bias here that the output score of the target class should be
1 for any training example. This inductive bias provides all
information contained in Y. Therefore, if we can introduce
more inductive biases about training examples, we can use
them to sort and filter the attack results.

In this paper, we introduce another inductive bias about the
inference logic of the target classifier: the inference logic of
examples in the same category should be similar. This prior
information is ignored during the inversion process. Fig 5
provides a visualized example to illustrate that inversion results
that have different inference logic from others are unsuccessful
results with high probability.

Specifically, for N unselected inversion results
(X,X,,...,X,} of the same target class, we calculate
corresponding decision heat-maps {H;,H,,...,H,}. Then the
confidence score c; of the i —th result can be calculated using
the following equation:

= 1M, > Hil 16)
k=1

Intuitively, samples that are far from the group’s decision
logic are more likely to be local optimal or adversarial
examples. Compared with transformation-based result select-
ing methods [10], [28], this decision-logic-based method only
requires one forward-backward query for an example, which
is query-efficient.
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Combining the search space selection algorithm with the
result sorting method, we propose QE-MIA, the Query-
Efficient Model Inversion Attack. Fig 3 illustrates the overview
of QE-MIA.

V. EXPERIMENTS

In this section, we assess the Query-Efficient Model Inver-
sion Attack (QE-MIA) across various image classification
scenarios and gauge its performance in comparison to earlier
MIA techniques. We first outline the specific settings used in
our experiments. Then we compare the overall performance
of QE-MIA with previous methods and show that QE-MIA
achieve the best attack success rate and attack efficiency. We
also conduct ablation studies to affirm the accuracy of our the-
oretical analysis. Additionally, we delve into the vulnerability
introduced by varying model architectures and configurations
and find that some widely-used implementation strategy and
algorithms make models more susceptible to model inversion
attacks.

A. Experimental Setup

1) Dataset: Following recent MIA research studies [10],
[22], we utilize three distinct datasets to assess and compare
our approach with previous MIAs. Specifically, we employ two
datasets containing human facial images: FaceScrub [40] and
CelebA [41], as well as a dataset featuring dog images known
as Stanford Dogs [37]. FaceScrub comprises a total of 106,863
face images featuring 530 different celebrities, while CelebA
offers a more extensive dataset, with 10,177 unique identities
and 202,599 facial images. In contrast, the Stanford Dogs
dataset encompasses 120 distinct dog breeds and comprises
a grand total of 20,580 images. We utilize these datasets to
train the target model following the implementation details
specified in PPA [10].

In addition to the target datasets, we leverage three prior
knowledge datasets: FFHQ [42], MetFaces [43], and AFHQ
[39]. These prior knowledge datasets consist of high-resolution
images, providing a visual contrast to the target datasets,
which predominantly consist of low-resolution images. This
approach serves to validate the transferability of MIA methods
across datasets with varying feature distributions. Furthermore,
it’s worth noting that the target dataset images are primarily
sourced from the web and often lack strict alignment and
preprocessing, reflecting real-world scenarios. In contrast, the
images in the prior knowledge dataset are better organized,
enhancing the generative model’s capacity for producing high -
quality synthetic data.

2) Model Selection: We employ three groups of pre-trained
models for the target datasets as our target classification
models. Each group includes a ResNet [44] model, a ResNeSt
[45] model, and a DenseNet [46] model. To ensure a fair
comparison, we utilize the pre-trained classification models
made available in [10] instead of training new models from
scratch. These models are widely used for face recognition and
object classification in real-world scenarios. Threats against
these models present specific challenges to data privacy in
deep learning contexts. For performance evaluation, we also
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utilize the pre-trained Inception-v3 [47] models released in
PPA [10] for a fair comparison.

Regarding generative models, we opt for publicly accessible
StyleGAN2 [38] models that have been trained on FFHQ
[42], MetFaces [43], and AFHQ [39]. While more recent and
potent generative models like StyleGAN3 [48] and diffusion
models [49] are available, our primary focus in this paper is
on enhancing generative MIAs within the context of a specific
generative model.

3) Baseline Methods: We introduce four white-box model
inversion attack methods as baseline methods for performance
comparison. GMI [9] is the first generative model inversion
attack using WGAN [11]. KED [27] trains a separate GAN for
each target model, while VMI [28] fits a separate variational
model for each target category and model. PPA [10] improves
the transferability of generative model inversion attacks by
introducing the powerful generative model StyleGAN [42] and
performs transformations during the attack process.

For analyzing the model vulnerability, we introduce S-
BMI [22] to perform model inversion attacks under black-box
constraints and compare its performance under different model
settings.

4) Evaluation Metrics: The evaluation of model inversion
attacks remains an open question, primarily centered on
the challenge of effectively gauging image similarity. While
prior research has proposed various evaluation metrics, the
reliability of these metrics remains largely empirical. These
metrics can be broadly categorized into decision-based and
statistical criteria. Decision-based criteria entail employing a
third-party model to determine whether a reconstructed sample
belongs to the target class. While this approach simulates
human judgment, it can be influenced by the capabilities of
the third-party model, including factors like local minima
and adversarial examples. Statistical criteria, on the other
hand, utilize statistical features to calculate the similarity
between the reconstructed samples and real data distributions.
Howeyver, the connection between these statistical features and
the semantic content of images remains an under-explored
area. To enhance the accuracy of model inversion attack
assessments, we combine both decision-based and statistical
metrics, following previous research. Furthermore, we conduct
a manual survey experiment to evaluate the similarity between
reconstructed samples and target samples.

For the initial comparison, we employ five metrics to
evaluate our method. Firstly, for decision-based evaluation,
we utilize Inception-v3 models [47] as independent evaluation
models alongside the target models, calculating the Top-1
and Top-5 accuracy of the inversion results. In terms of
statistical evaluation, we compute the feature distance J,,
between the inversion results and the target training examples.
To assess image quality, we employ FID [50] to evaluate
the quality of the inversion results. Finally, we compare the
average query numbers (ANQ) required for a successful attack
by different methods. For the extended comparison between
PPA and QE-MIA, we provide both the original sample and
several reconstructed samples generated by various methods
without labels. A group of observers then manually assigns
scores based on the similarity between these samples. Table IV
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TABLE IV
EVALUATION METRICS USED IN THIS PAPER

Metric Quality Efficiency
Decision-based  Statistical ~ Manual
TAcc@l v
TAcc@b v
\L(sev al v
VFID v
JANQ v
1Scorem, v
TABLE V

EXPERIMENTAL RESULTS ON RESNET18 TRAINED ON FACESCRUB.
ALL GENERATIVE MODELS ARE TRAINED ON FFHQ. THE
BEST AND SECOND-BEST RESULTS ARE BOLDED
AND UNDERLINED RESPECTIVELY

t Acc@l 1 Acc@5 | Sepe L FID | ANQ
GMI [9] 1246%  28.84% 15525 8530 12038.52
KED [27] 05.02%  09.94% 16371 229.65  29880.48
VMI [28] 57.98%  68.66% 151.57  62.10  2587.10
PPA [10] 87.60%  95.90% 12501 4377  684.93
QE-MIA(Ours) 93.10%  98.74% 11952  42.68  219.12

presents the evaluation metrics and perspectives used in the
experiments conducted in this paper.

5) Attacker’s Capability: In this paper, we mainly consider
model inversion attacks under white-box constraints, where
attackers have access to calculate gradients through the target
model, which is the same as the baseline methods [9], [10],
[27], [28].

6) Implementation Details: We build our algorithm mainly
on the basic of PPA [10] using the PyTorch platform [S1]. All
experiments are carried out on 16 X 4352 CUDA cores.

B. Initial Comparison

We first compare our method with four baseline methods
on a ResNet-18 model pre-trained on the FaceScurb dataset.
We perform different MIAs on the model following the
same implementation details in [10]. Table V displays the
performances of these five methods. The experimental results
demonstrate that QE-MIA outperforms the four baseline meth-
ods across all five metrics. Additionally, we make several
observations based on the data presented in Table V:

(1) In terms of decision-based metrics, both PPA and QE-
MIA exhibit significantly higher Top-1 and Top-5 accuracy.
This improvement cannot be attributed to a reduction in the
search space, as suggested by earlier studies [9], [10], since
the search spaces of PPA and QE-MIA encompass more
dimensions than the other baseline methods. According to our
theoretical analysis, the inclusion of the more potent Style-
GAN enhances the generative capability of the attack, leading
to heightened attack accuracy. Consequently, by expanding the
search space to a balanced extent, QE-MIA further improves
the attack performances compared to PPA.

(2) When assessing statistical metrics, we observe similar
trends as those seen in the decision-based metrics, but with
significant variations in the extent of change. For example,
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when compared with GMI, VMI significantly improves Top-1
accuracy by 45.52%, while only enhancing 6,,, by 3.68 out of
155.25. This observation underscores the disparities between
existing evaluation metrics and underscores the need for more
comprehensive metrics.

(3) Regarding efficiency metrics, GMI and KED demand
over 10,000 queries on average to the target model for a
successful attack, rendering them computationally intensive
and less practical under query-limited conditions. QE-MIA,
on the other hand, only requires an average of 219.12
queries to obtain a valid result, with a query overhead of
31.99% compared to PPA and 8.47% compared to VMI,
respectively. This improvement is attributed to two factors:
QE-MIA enhances the attack success rate by selecting an
appropriate search space, leading to a reduction in the number
of attempts required for a valid outcome. Additionally, QE-
MIA reduces the number of queries needed for a single attempt
by introducing additional inductive biases.

It’s worth noting that the computational overhead encom-
passes both the preparation process and the attack process.
In the methods mentioned, GMI necessitates the training of
a WGAN for a specific target dataset, while KED and VMI
require training the corresponding generative model for each
model and class, respectively. Only PPA and QE-MIA utilize
publicly available generative models for attacks without the
need for additional training, further widening the gap in
computational overhead between the various approaches.

C. Extended Comparison

We further evaluate QE-MIA on more datasets and models.
For extended evaluation, we only compared QE-MIA with the
Plug&Play Attack [10], as it had already outperformed other
existing approaches by a large margin as shown in Table V.
First, we compared the performance of PPA and QE-MIA
using FFHQ as prior knowledge for human facial images
and AFHQ for animal images. Table VI presents the exper-
imental results across three different target models on three
distinct datasets. In general, a similar trend to Table V can
be observed in Table VI. QE-MIA demonstrates a significant
improvement in decision-based metrics and a slight improve-
ment in statistical metrics compared to PPA. Moreover,
QE-MIA substantially enhances attack efficiency compared
to PPA. We can made the following observations based on
Table VI:

(1) Across different datasets, the decision-based metrics
(attack success rate) exhibit significant variations. The effec-
tiveness of the attack is observed to be negatively correlated
with the size of the training dataset. Large-scale datasets
contain more information (bits) compared to smaller ones.
When employing the same deep learning model to create
classifiers for different datasets, the information loss rate is
higher in large-scale datasets, resulting in less mutual informa-
tion between input samples and output scores. Our theoretical
analysis suggests that a reduction in mutual information leads
to a decrease in the success rate of the attack, which aligns
with the experimental results.

(2) For different target models trained on the same dataset,
the attack success rates also have a large variance even when
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TABLE VI

EXPERIMENTAL RESULTS ON RSENET-152, DENSENET-169, AND
RESNEST-101. UTILIZING FFHQ AS HUMAN FACIAL PRIOR
KNOWLEDGE AND AFHQ AS ANIMAL FACE PRIOR KNOWLEDGE.
THE BEST AND SECOND-BEST RESULTS ARE BOLDED
AND UNDERLINED RESPECTIVELY

Model 1 Acc@l 1 Acc@5  epa JFID LANQ

ResNeSt-101  93.83%  99.68% 122.14 4635  639.45

S PPA RseNet-152 92.90%  99.54 12073 46.58  645.86
S DenseNet-169  94.77%  99.71% 11642 4642  633.11
3 ResNeSt101  98.51%  99.93%  118.79 4584  203.03
£  Ours ResNet-152 96.42%  99.88% 11564 4517  207.43
DenseNet-169  97.59%  99.91% 117.69  46.52  204.94

ResNeSt101  81.85%  94.46% 30270 44.19  733.05

< PPA ResNet-152 80.14%  94.80%  308.65 40.69  748.69
3 DenseNet-169  73.76%  89.47%  310.83 4125 81345
3 ResNeSt101  93.57%  99.57% 29750 4037  204.98
Ours  ResNet-152 91.81%  99.81% 30527 40.16  217.84
DenseNet-169  81.49%  9591%  311.14 42.63 24543

ResNeSt101  91.29%  98.83% 6087 3351 657.25

z, PPA  ResNet-152 9533%  99.55%  59.90 3215  629.39
g DenseNet-169  93.86%  9947% 6031 3207  639.25
. ResNeSt101  94.67%  99.28% 6035  32.18  211.26
?  Ours ResNet-152 9743%  9935% 5844 3199  205.28
DenseNet-169  95.82%  99.64%  60.17 3237  208.72

the capabilities of these models are very close. For example,
the test accuracy of the target ResNeSt-101, ResNet-152, and
DenseNet-169 on CelebA are 87.35%, 86.78%, and 85.39%,
respectively. While the Top-1 accuracy rate of QE-MIA against
these three different models are 97.57%, 91.81%, and 81.49%,
respectively. This observation motivates us to further ana-
lyze the vulnerability of different models in the following
sections.

(3) In contrast to decision-based metrics, QE-MIA only
marginally enhances statistical metrics compared to PPA.
Moreover, we observe that sometimes inconsistent trends arise
between decision-based and statistical metrics, such as a
higher success rate alongside a higher FID, highlighting the
limitations of existing evaluation metrics for model inversion
attacks.

To further validate the quality of reconstructed images, we
conducted additional manual evaluations on the attack results.
Figure 6 provides visualized examples of attack results from
Table VI. Based on these visual results, we performed manual
assessment experiments. Specifically, we randomly selected
50 target classes from CelebA and FaceScrub, generated and
selected reconstruction samples using both PPA and QE-MIA.
We then invited five observers to independently score the target
samples and their corresponding reconstructed samples. The
attack methods corresponding to the reconstructed samples
were not disclosed during the experiment. Each group of
samples was awarded one point for the reconstructed sample
that visually resembled the original sample more closely,
with no points awarded to the other sample. Table VII
presents the statistics for individual observers and the average
scores.

Our observations indicate that the visual quality of recon-
structions produced by PPA and QE-MIA is very similar on
small-scale datasets, which aligns with the higher attack suc-
cess rates of both methods on FaceScrub. However, on CelebA,
QE-MIA improves the visual similarity between reconstruction
samples and target samples while simultaneously achieving
higher attack success rates.
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Fig. 6. A visualization example of Tab VI.
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Fig. 7. A visualization example of Tab VIII.

TABLE VIII

EXPERIMENTAL RESULTS ON RSENET-152, DENSENET-169, AND
RESNEST-101. UTILIZING METFACES AS HUMAN FACIAL PRIOR
KNOWLEDGE. THE BEST AND SECOND-BEST RESULTS
ARE BOLDED AND UNDERLINED RESPECTIVELY

Model T Acc@l 1 Acc@5  |depqr  FID JANQ
TABLE VII ResNeSt-101  75.58%  93.26% 13544 89.06  793.86
S PPA  RseNet-152  7289%  91.75% 14124 6812  823.16
MANUAL SCORES OF ATTACK RESULTS OF PPA AND QE-MIA B DenseNet-169  80.14%  95.33% 12608  78.02  748.69
g ResNeSC101  85.64%  98.72% 13045 8252 23354
£ Ous RseNet-152  7823%  9596% 13310 68.86  255.66
Dataset Method Wi Wo Wi Wi W5 Scorem DenseNet-169  88.20%  99.11% 12135 7513 22676
ResNeSt-101  36.45%  60.84%  385.73 74.60  1646.00
CelebA PPA 3026 27 28 29 0.56 PPA  RseNet-152  40.02%  65.80% 38509 7428 149925
<<
QE-MIA 20 24 23 22 2] 0.44 3 DenseNet-169  30.72%  55.81% 39405 8211  1953.13
3 ResNeSt101  61.73%  8828% 36643 7030  323.99
Facescrub  TPA 26 27 22 26 26 0.52 Ours  RseNet-152  67.21%  92.59%  368.57 7128  297.57
QE-MIA 24 23 28 24 24 048 DenseNet-169  55.48%  76.05%  386.80 7492  360.49

D. Transferability

Another important capability of model inversion attack
methods is the ability to migrate between different distribu-
tions. Since the attacker lacks access to the target dataset, a
substantial gap often exists between the distribution of the
prior knowledge dataset and the distribution of the victim
dataset. In line with previous methods [10], we employed
StyleGAN2 trained on the Metfaces dataset to evaluate the
transferability of QE-MIA.

As presented in Table VIII, QE-MIA markedly enhances
attack accuracy compared to PPA. Utilizing the same genera-
tive model as PPA, QE-MIA better strikes a balance between
generative capability and search complexity through the selec-
tion of an appropriate search space. Consequently, it achieves
improved transferability between distinct distributions. When
compared to PPA, QE-MIA enhances the attack success rate by
an average of 7.82% on the FaceScrub dataset. For the larger -
scale CelebA dataset, QE-MIA improves the attack success
rate by an average of 25.74%. From an attack efficiency
standpoint, QE-MIA requires only 30.26% and 19.26% of
the query times needed by PPA on FaceScrub and CelebA,
respectively. Figure 7 provides visual examples of the results
from Table VIII. As shown in the figure, the images generated
by QE-MIA exhibit highly recognizable and similar features,
despite undergoing a substantial stylistic shift from the original
distribution.

Combining the results from Table VI and Table VIII,
we observe that QE-MIA achieves significant performance
improvements, particularly on larger datasets and when the
prior distribution is significantly different from the target
distribution. This makes QE-MIA applicable to a wide range
of attack scenarios.

E. Ablation Study

To provide a more comprehensive analysis of QE-MIA,
we conducted a series of ablation studies to validate the
correctness of our theoretical analysis and the effectiveness
of the proposed algorithms. Specifically, we delved into the
effectiveness of applying different search spaces to QE-MIA
under varying prior knowledge. Furthermore, we examined
how different decision heat-map generation algorithms and dif-
ferent group sizes influence the effectiveness of the proposed
result selection method.

In our evaluation of the search space selection process, we
conducted QE-MIA on the CelebA dataset using generative
models trained on FFHQ and Metfaces. We considered three
baseline search spaces: Z, W, and W+. For W+, which
comprises multiple components with the same structure in
StyleGAN2, we explored different subsets, as each style
controller vector contains 18 components, represented by
{Wi,W,,...,Wig}. These components control the generation
process at various levels. We gradually incorporated more
components into the search space, moving from lower to
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Fig. 8. Experimental results of ablation studies. (a) Search space; (b) group
sizes and heat-map algorithms.

higher levels, leading to a range of attack success rates and
FID scores.

Figure 8 (a) presents the results of the ablation experiments
on the search space selection process. The findings are as
follows:

(1) Variations in the search space have a notable impact
on both decision-based metrics (attack success rates) and
statistical metrics (FID). For the experimental conditions, QE-
MIA achieves the best attack performance when the search
space includes 13 to 15 components of W+. As we gradu-
ally reduce the number of components in the search space,
the attack performance of QE-MIA gradually decreases, as
the generative capability of generative models is not fully
utilized.

(2) For different prior knowledge datasets, the same gener-
ative model achieves optimal performance in a close search
space (e.g., generative models trained on FFHQ and Metfaces
both achieve the best performance near W14), which suggests
that we can select and migrate the search space on an existing
dataset to an unknown dataset, improving the utility of QE-
MIA.

In our exploration of the result selection algorithm’s impact
on QE-MIA’s performance, we employed decision heat-map
generation algorithms (e.g., Grad-CAM [52]) to generate deci-
sion heat-maps corresponding to each result for each target
class. We then computed an average heat-map and compared
the similarity between individual heat-maps and the average
heat-map. This process resembles a form of collective voting.
In the ablation study, we assessed the influence of two key
factors on the result selection process: the decision heat-
map generation algorithm and the group size. We conducted
experiments on the CelebA dataset and recorded the results in
Figure 8 (b). Here are our observations regarding the result
selection process:

(1) As the group size increases, the success rates of uns-
elected results and results chosen by the baseline method
(transformation-based selection) remain largely constant, as
the selection process is unrelated to group size. Conversely,
the success rates of results chosen by different heat-map-based
methods steadily rise, indicating that an increase in group
size enhances the accuracy of the group members’ voting
process.

(2) With smaller group sizes, the accuracy of decision-
heat-map-based methods closely aligns with that of the
transformation-based method, but with significantly reduced
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Fig. 9. A visualized example for results selection.

TABLE IX

EXPERIMENTAL RESULTS OF MODEL INVERSION ATTACKS
AGAINST DIFFERENT MODEL SETTINGS

T Acc@l 1t Acc@5 | bepar L FID | ANQ
ResNeSt-101 (white-box) 94.28% 99.35% 299.03  41.97 212.13
ResNeSt-101 (white-box+deployed)  97.50% 99.81% 297.85  40.24 205.13
ResNeSt-101 (black-box) 71.64% 90.88% 31243 4557 5583.47
ResNeSt-101 (black-box+deployed) — 85.25% 94.16% 308.27 43.35 4692.08

computational overhead. As the group size grows, the accuracy
and efficiency of decision-heat-map-based methods far outstrip
the transformation-based method.

(3) The choice of heat-map generation methods has a
limited impact on result selection because the multi-member
voting process blurs the subtle differences between heat maps
generated by different methods.

Figure 9 provides a visual example of QE-MIA’s result
selection process. For an attack with a group size of 50,
QE-MIA ranks the group members using the decision-heat-
map-based algorithm. As shown in Figure 9, the top-ranked
samples exhibit robust similarity features, while the lower-
quality generated samples are ranked lower in the hierarchy.

F. Model Vulnerability

As per our theoretical analysis, the efficacy of model
inversion attacks is linked to the mutual information of input
and output variables, a value influenced by specific model
settings. We sought to validate this conclusion by conducting
experiments. As displayed in Table IX, under both white-box
and black-box conditions, deployed face recognition models
(models utilizing hidden features for prediction) are more
susceptible to model inversion attacks. Specifically, for black-
box conditions, the deployment process of face recognition
models increased the attack success rate by an average of
13.61% and reduced the query overhead by an average of
15.96%. This finding introduces a new threat, suggesting that
specific settings during real-world applications may lead to
model privacy leakage.

We also examined the impact of adversarial training on
model inversion attacks. Using an adversarial training method
with acceptable computational overhead [53], we trained the
DenseNet-169 model on the Stanford Dogs dataset. We then
compared the attack performance of QE-MIA on the original
and adversarially pre-trained models. As indicated in Table X,
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TABLE X

EXPERIMENTAL RESULTS OF MODEL INVERSION
ATTACKS AGAINST ADVERSARIAL ROBUST MODELS

Model (Test Acc) 1T Acc@l 1 Acc@5 | depar 4 FID | ANQ
Densenet-169 (74.39%) 95.82% 99.67% 60.17 32.37 208.72
ADV-Densenet-169 (66.23%)  98.15% 99.86% 60.06 32.54 203.77

although adversarial training slightly decreased the classifica-
tion accuracy for clean test examples and the attack success
rate for adversarial attacks, the attack success rate of model
inversion attacks increased. Intuitively, the adversarial training
process reduces the probability P(F X) = F(X) and X # X),
leading to an increase in /(X,Y). According to our theoretical
analysis, the adversarial training process diminishes the error
probability of model inversion attacks.

From a model vulnerability standpoint, we demonstrate that
specific model settings, including those considered to enhance
robustness, may elevate the risk of model inversion attacks in
practical scenarios. This finding offers a new perspective for
assessing model vulnerability.

G. Model Inversion Defense

To alleviate the privacy leakage risk introduced by model
inversion attacks, recent studies proposed several model inver-
sion defense methods [6], [33], [54], [55]. These methods
can be divided into two main categories: (1) reducing the
information available to model inversion attackers [6], [33]; (2)
misleading the model inversion process [54], [55]. Therefore,
we further evaluate the attack performances of different model
inversion attacks under these defense methods to compare the
robustness of different attack methods.

Specifically, we compare the attack success rates (ASR)
and the top-5 attack success rates (ASR-5) of four baseline
attacks and QE-MIA under No Defense, Differential Privacy
(DP) [6], and GAN-ID [55]. Of the two defense methods,
DP and GAN-ID represent the first type and the second
type of defense methods, respectively. DP utilizes differential
privacy techniques to reduce recognizable features of training
examples contained in classification information. GAN-ID
uses generative models to generate and inject several fake
targets in the training dataset and misleads the attackers to
reconstruct fake targets rather than protected targets.

Tab. XI provides the experimental results of attacks under
model inversion defenses. Generally, QE-MIA maintains the
highest attack success rate under different situations, despite
the varying degrees of competence of DP and GAN-ID in
defending against different attack methods. By investigating
the results of the experiment, we can draw several further
conclusions:

(1) QE-MIA can bypass the first type of defense methods:
Although DP slightly reduced the attack success rate of
QE-MIA, there exists a trade-off between defense ability
and model usability (e.g., to effectively reduce the attack
success rate, DP will cause a 20% ~ 30% decrease in the
clean accuracy of protected models). In order to ensure the
availability of the target model, the first type of defense
methods has a maximum percentage of limitations on the avail-
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TABLE XI

EXPERIMENTAL RESULTS OF DIFFERENT MODEL INVERSION
ATTACKS AGAINST TWO DEFENSE METHODS

Attack No Defense DP GAN-ID
ac ASR  ASR-5 | ASR ASR-5 | ASR  ASR-5
GMI 012 029 | 005 0.3 | 000  0.08
KED 005 010 | 002 008 | 000 005
VMI 058 069 | 039 057 | 000 0.10
PPA 0.88 0.96 0.51 0.74 0.13 0.32
QE-MIA | 093 099 | 068 087 | 027 044
TABLE XII

EXPERIMENTAL RESULTS ON HUMAN FACIAL DATASETS
USING AFHQ AS PRIOR KNOWLEDGE

Dataset Method T Acc@Ql 1 Acc@5 | depar |+ FID | ANQ
CelebA PPA 0.71% 5.89% 40654  97.75 84,507.04
QE-MIA  4.82% 18.39% 398.08  93.86 4149.38
Facescrub PPA 1.07% 3.57% 14493  88.45 56074.77
ACeSCIUD OE-MIA  10.06% 15.32% 139.55  85.60 1988.07

able information, and QE-MIA can still utilize the remaining
information to achieve model inversion attacks in practice.

(2) QE-MIA is more robust against the second type of
defense methods: As can be obsered in Tab. XI, GAN-ID
can successfully defend GMI, KED, and VMI with 100%
probabilities. This is because these attack methods are based
on the same or a similar prior data distribution with the target
data distribution, thus GAN-ID can take advantage of the same
prior knowledge to generate fake targets. The transferability
of QE-MIA supports it to utilize a prior data distribution
that has a large shift from the target data distribution, which
makes QE-MIA more robust against the second type of defense
methods.

H. Limitations and Future Work

While the proposed method QE-MIA achieves superior
performance in terms of attack success rate and efficiency,
it shares some limitations with existing methods. Generative-
based model inversion attacks, including QE-MIA, make a
crucial prior assumption: the attacker already knows the data
type of the target model. When this assumption is not met,
existing methods are highly likely to fail. Intuitively, if the
attacker uses a GAN trained on animal images to conduct
model inversion attacks on face recognition models, the prob-
ability P, in Eq. 11 will approach zero, resulting in a high
error probability. Table XII provides experimental results for
PPA and QE-MIA when attacking ResNeSt-101 trained on
different human facial datasets using the AFHQ dataset as
prior knowledge. As shown in Table XII, while QE-MIA
still has a slightly higher attack success rate than PPA, both
methods have significantly lower success rates than when
using human facial datasets as prior knowledge. Furthermore,
as depicted in Figure 10, even the successful attack results
exhibit a substantial offset from the identifiable features of
real samples, potentially leading to misclassification of the
target data type. These limitations of generative-based model
inversion attacks warrant further research to address scenarios
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Fig. 10. A visualized example of Tab XII: (a) original image (we blurred it
to avoid ethical issues); (b) attack results share similar features but with large
style offset; (c) decision heat-map of b; (d) attack results behave as adversarial
examples; (e) decision heat-map of d.

with limited or even incorrect prior knowledge, which also
represents a potential direction for future work.

VI. CONCLUSION

In this paper, we theoretically analyze the model inver-
sion process from the perspective of information flow and
demonstrate the lower boundary of the error probability of
a single attack. Based on the theoretical analysis, we propose
QE-MIA, a query-efficient model inversion attack. By choos-
ing the proper optimization variable and introducing additional
inductive biases, QE-MIA reduced the attack overhead by a
large margin (60% ~ 70%) while achieving a significantly
better attack success rate (5% ~ 25%). Additionally, we
analyze the vulnerability caused by different model settings
from the perspective of information flow and demonstrate
that specific model settings will increase the risk of model
inversion attacks in practice. We hope our method can provide
a new perspective for analyzing model inversion attacks and
motivate future work. The most relevant future work might be
performing valid model inversion attacks under limited prior
knowledge, where the attacker has no knowledge about the
target data type.
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