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Backdoor Attack and Defense on Deep Learning:

A Survey
Yang Bai , Gaojie Xing , Hongyan Wu , Zhihong Rao , Chuan Ma , Shiping Wang , Xiaolei Liu ,

Yimin Zhou , Jiajia Tang , Kaijun Huang , and Jiale Kang

Abstract—Deep learning, as an important branch of machine
learning, has been widely applied in computer vision, natural
language processing, speech recognition, and more. However,
recent studies have revealed that deep learning systems are
vulnerable to backdoor attacks. Backdoor attackers inject a
hidden backdoor into the deep learning model, such that the
predictions of the infected model will be maliciously changed
if the hidden backdoor is activated by input with a backdoor
trigger while behaving normally on any benign sample. This
kind of attack can potentially result in severe consequences
in the real world. Therefore, research on defending against
backdoor attacks has emerged rapidly. In this article, we have
provided a comprehensive survey of backdoor attacks, detections,
and defenses previously demonstrated on deep learning. We
have investigated widely used model architectures, benchmark
datasets, and metrics in backdoor research and have classified
attacks, detections and defenses based on different criteria.
Furthermore, we have analyzed some limitations in existing
methods and, based on this, pointed out several promising future
research directions. Through this survey, beginners can gain a
preliminary understanding of backdoor attacks and defenses.
Furthermore, we anticipate that this work will provide new
perspectives and inspire extra research into the backdoor attack
and defense methods in deep learning.
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I. INTRODUCTION

D
EEP learning, an important branch of machine learning,

employs algorithms that use multiple processing layers

with complex structures or various nonlinear transformations

to achieve high-level abstractions of data [1]. It has been exten-

sively researched in various domains, such as computer vision

[2], natural language processing [3], and speech recognition [4].

Furthermore, the use of deep learning to ensure the security of

internet applications and data has become ubiquitous in real

life. For example, facial recognition [5], sentiment analysis

[6], and image segmentation [7]. Undoubtedly, deep learning

has brought great convenience to human life. However, the

security and privacy risks associated with deep learning have

also increased. Consequently, many researchers have begun to

focus on studying its own security.

In 2017, Gu et al. [8] introduced BadNets, which was the

first proposal for backdoor attacks in machine learning. Specif-

ically, backdoor attacks involve training a model with hidden

functionalities (i.e., backdoors) during the training process and

activating them with specific inputs (i.e., triggers) to produce

the desired output for the attacker [9]. Therefore, in critical

areas such as autonomous driving and facial recognition, the

consequences of a backdoor attack can be severe and difficult to

manage. Given the potential risks, researchers extensively stud-

ied backdoor attacks across various domains, such as natural

language processing [9], [10], [11], computer vision [12], [13],

[14], speech recognition [15], [16], [17], [18] and federated

learning [19], [20], [21]. At the same time, many researchers

have been devoted to studying defense methods against back-

door attacks [22], [23], [24], [25], [26].

Before this, many scholars have conducted detailed investiga-

tions on backdoor attacks. Several surveys such as Sheng et al.

[27], Omar et al. [28], and Cui et al. [33] focus on backdoor

attacks in natural language processing (NLP), while Li et al.

[29], Gao et al. [30], Guo et al. [31], and Li et al. [32] focus

on computer vision (CV). However, these works share some

common issues: 1) the number of attacks and defense methods

in the review is insufficient; 2) there is no classification based

on deep learning approaches and applications; and 3) lacking

of content on backdoor attacks in large language models. To
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TABLE I
COMPARISON WITH OTHER REVIEWS

Article Year Deep Learning

Approaches

Number of Attacks Number of

Defenses

Applications

(taxonomy;

Yes/No)1

Attacker

Knowledge

(Yes/No)2

Attack Taxonomy Defense Taxonomy Main Structure of the Article

Sheng et al. [27] 2022 Deep learning 22 17 NLP; No No Data poisoning attack

Hybrid methods attack

Strategies attack

Benchmark datasets attack

Detection method

Elimination method

Attack Method

Defense Method

Omar et al. [28] 2023 Transfer learning

Deep learning

29 26 NLP; No Yes Character-level attack

Word-level attack

Sentence-level attack

End-to-End Backdoor Learning

Attacks

Basic Learning Attacks

Clean-label Attacks

Poisoned data identification

Input Space Outliers

Latent Space Outliers

Identifying Backdoored Models

Reconstructing Triggers

Trigger Agnostic Detection

Trigger Detection During Deploy-

ment

Reparing models post-training

Trigger Patching

Taxonomy of Backdoor Learning

Threat Model

Defence Against Backdoor Attacks

Li et al. [29] 2023 Deep learning

Reinforcement learning

Federated learning

51 20 CV; No No Visible backdoor attack

Invisible backdoor attack

Clean-Label backdoor attack

Physical backdoor attack

Model-based backdoor attack

Sequence-based backdoor attack

Dataset-based defense

Model-based defense

Trigger-based defense

Experiments and Evaluation for

Backdoor

Attack Strategies of Backdoor At-

tack

Defense Strategies of Backdoor

Attacks

Backdoor Attack in other Fields

Gao et al. [30] 2020 Reinforcement learning

Transfer learning

Federated learning

58 29 NLP; No

CV; No

Yes Outsourcing Attack

Pretrained attack

Data collection attack

Collaborative Learning Attack

Post-deployment attack

Code Poisoning Attack

Blind backdoor removal

Offline inspection

Online inspection

Post backdoor removal

A taxonomy of adversarial attacks

on deep learning

Backdoor Attacks

Backdoor Countermeasures

Flip side of backdoor attack

Guo et al. [31] 2022 Deep reinforcement learn-

ing

Transfer learning

37 40 CV; No Yes Corrupted-label attacks

Clean-label attacks

Data level

Model level

Training dataset level

Formalization, Threat models and

Requirements

Backdoor Injection

Data level Defences

Model level Defences

Training Dataset level Defences

Li et al. [32] 2022 Federated learning

Transfer learning

Deep learning

Reinforcement learning

97 53 NLP; No

CV; No

Yes Poisoning-based backdoor attacks

Nonpoisoning-based backdoor at-

tacks

Empirical Backdoor Defenses

Certified Backdoor Defenses

Poisoning-based backdoor attacks

Nonpoisoning-based backdoor at-

tacks

Connection with related realms

Backdoor defenses

Benchmark datasets

Cui et al. [33] 2022 Deep learning

Transfer learning

14 6 NLP; No No Accessibility

Attack scenarios

Detection-based methods

Correction-based methods

Textual Backdoor Attack and De-

fense

Evaluation Frameworks

Benchmark Experiments of At-

tacks

Benchmark Experiments of De-

fenses

Ours 2024 Federated learning

Deep reinforcement learn-

ing

Transfer learning

Swarm learning

102 85 NLP; Yes

CV; Yes

Speech

recognition;

Yes

Yes Deep learning approaches

Applications

Attacker’s knowledge

Other types of backdoor attacks

Timing of detection

Detection object

Multi-level backdoor defense

Model lifecycle

Other types of backdoor defenses

Backdoor Attacks against Deep

Learning System

Taxonomy of Backdoor Attacks

Taxonomy of Backdoor Detections

Taxonomy of Backdoor Defenses

Architectures, Datasets and Met-

rics

1Y/N indicates whether the taxonomies from the application were used for classification in the article.

2 Y/N indicates whether the attacker’s knowledge was used as a classification criterion in the article.
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Fig. 1. Main framework of this survey.

facilitate comparison, we use Table I to summarize the dif-

ferences between this article and the aforementioned review

articles.

Considering that Li et al. [29], Gao et al. [30], Guo et al. [31],

and Li et al. [32] focus on the review of backdoor attacks and

defenses in deep learning which are closely related to our work,

we need to highlight the differences between our work and

theirs. First, it is necessary to point out the common weakness

present in these four works

1) Benchmark datasets: Li et al. [32] and Li et al. [29]

compiled only 12 dataset types, while Gao et al. [30] and

Guo et al. [31] did not organize datasets.

2) Evaluation metrics: Li et al. [29] and Gao et al. [30]

focused on ASR and ACC, while Guo et al. [31] summa-

rized only ASR. Li et al. [32] mentioned other metrics

like F1-score but incompletely.

3) Future research direction: Li et al. [29] highlighted three

future directions, but they are too general.

Although other works offer more specific descriptions, they

may no longer be novel. In addition to the three points men-

tioned above, defense can be understood to include both de-

tection and the defense mechanism itself. However, Li et al.

[29] and Li et al. [32] did not provide a separate summary on

backdoor detection. For the other three works, which focus on

backdoor reviews in NLP, namely Sheng et al. [27], Omar et al.

[28], and Cui et al. [33], there are also several differences that

need to be clarified. These three works, due to their publica-

tion dates, lack content on backdoor attacks in large language

models. Additionally, they do not provide classifications under

different learning approaches. Furthermore, although Cui et al.

[33] proposed an open-source tool for evaluating text back-

doors, it lacks a systematic classification of backdoor research

in NLP.

To address aforementioned issues, in this work, we system-

atically compare and analyze the current techniques used in

backdoor attacks and defenses in the field of deep learning,

having reviewed 102 attacks and 85 defenses. The scope and

number of methods covered in this review exceed those in the

above mentioned works. In addition, considering that back-

door attacks and defenses vary across different deep learning

approaches and applications (e.g., trigger design and backdoor

implantation methods), we propose a new taxonomy of attacks

based on different deep learning approaches and applications.

Moreover, in light of recent developments in the field of artifi-

cial intelligence, we add content related to backdoor attacks in

large language models. For the evaluation metrics, we include

PSNR, SSIM, and other relevant metrics. Besides, building on

the aforementioned works and recent developments, we propose

several new research directions. The primary goal of this survey

is to offer researchers an extensive array of content related to

backdoor research, thereby fostering the ongoing development

of backdoor learning. To help readers familiarize themselves

with the structure of this paper, we illustrate the main frame-

work in a figure, as shown in Fig. 1.

This work’s contributions can be succinctly summarized as

follows:

1) Comprehensive investigations: This study aims to pro-

vide an in-depth review of the existing research field re-

lated to backdoor attacks, detections and defenses within

the domain of deep learning.

2) Taxonomies of backdoor attacks, detections and de-

fenses: Taxonomies of backdoor attacks with four dif-

ferent elements. Existing efforts on backdoor attacks are

classified according to deep learning approaches, appli-

cations, levels of attacker’s knowledge and other criteria.

The first two classifications are newly proposed by us.

Additionally, we classified backdoor detection methods

based on the timing of detection and the detection objects.

Furthermore, we categorized backdoor defenses accord-

ing to multiple levels, the lifecycle of the model, and

other relevant factors. This approach facilitates a rapid

comprehension of the backdoor research.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Chengdu University of Information Technology. Downloaded on November 07,2024 at 05:22:14 UTC from IEEE Xplore.  Restrictions apply. 



4 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS

3) Prospective opportunities for further exploration: This

article puts forward several potential avenues for further

exploration in the domains of backdoor research. The

objective is to facilitate the advancement of backdoor

research in a more holistic and profound manner, thereby

catalyzing innovation and progression in this domain.

In the remaining sections of this article, Section II provides

a brief introduction to the fundamental principles of backdoor

attacks. Sections III–V classify and describe existing backdoor

attacks, detections and defenses, respectively. Section VI sum-

marizes commonly used model architectures, datasets and met-

rics in backdoor research in tabular form. Section VII proposes

several future research directions. Finally, we provide a brief

summary of the entire article.

II. BACKDOOR ATTACKS AGAINST DEEP LEARNING SYSTEM

A. Definition of Backdoor Attacks

The goal of a backdoor attack is to implant a hidden backdoor

into a deep neural network (DNN) to manipulate the model’s

predictions when a specific trigger set by the attacker is trig-

gered. This kind of attack involves the injection of a trigger

condition into a limited segment of the training data, covertly

embedding the backdoor within the targeted model. During the

process of experimentation, the model being evaluated displays

typical behavior when presented with clean test data. However,

it consistently generates predictions that correspond with a cer-

tain goal category, which may be incorrect as soon as the test

samples include the accurate situation that triggers a backdoor

impact. This enables the system to work normally with no

requirement of the trigger situation but to execute malicious

operations under specific conditions set by the attacker. This

emerging and rapidly evolving real-world attack method can

lead to severe consequences.

B. Trigger Insertion

Using X to represent clean samples, M to represent mask

vectors, △ to represent trigger patterns, Xt to represent trigger

samples, and⊙ to represent the Hadamard product, the insertion

of triggers can be formalized as (1). Furthermore, following

Guo et al. [34], we employ Fig. 2 to provide a more intuitive

explanation of trigger injection

Xt = (1 −M)⊙X +M ⊙△ (1)

C. The General Pipeline of Backdoor Attack

The attacker inserts a triggering mechanism into a clean

sample to generate a poisoned sample. Subsequently, the model

undergoes training using both the poisoned and clean samples,

which causes the change from a clean model to a model contain-

ing a backdoor. When the attacker supplies clean samples to the

backdoor model, it yields precise predictions. Nevertheless, in

the scenario in which the attacker provides poisoned samples

containing certain triggers to the backdoor model, the model

will generate predictions according to the attacker’s instruc-

tions. In this setting, we demonstrate the previously mentioned

Fig. 2. Illustration of trigger injection [34].

method using traffic sign classification as a case study, as rep-

resented in Fig. 3.

III. TAXONOMY OF BACKDOOR ATTACKS

In this section, we will categorize existing backdoor attacks

based on deep learning approaches, applications, attacker’s

knowledge and other criteria. Initially, different deep learning

approaches exhibit significant differences in data processing,

model training, and application scenarios, which in turn affect

the methods and impacts of backdoor attacks. Additionally,

the manifestations and harms of backdoor attacks vary across

different applications. Furthermore, an attacker’s knowledge

significantly influences the attack success rate and stealthi-

ness of backdoor attacks, and assumptions about an attacker’s

knowledge can benefit targeted defense research. Moreover,

some special optimization methods and design standards have

opened new research avenues for backdoor attacks, such as

invisible triggers and clean label attacks.

Through the aforementioned classification dimensions, we

can analyze and understand backdoor attacks more systemati-

cally. These classification dimensions are both independent and

interconnected. For instance, backdoor attacks in different deep

learning approaches may manifest differently in CV and NLP,

and attackers’ knowledge can influence their attack strategies

across various applications and learning approaches. Therefore,

this classification method not only helps researchers compre-

hensively understand backdoor attacks but also provides clear

directions and methodologies for future research, enhancing the

reliability and practicality of the classification. The taxonomies

and articles are shown in Fig. 4.

A. Backdoor Attacks Based on Different Deep Learning

Approaches

1) Backdoor Attacks Against Federated Learning: Feder-

ated learning (FL) is an emerging artificial intelligence tech-

nology initially proposed by Google in 2016 [35] aimed at

addressing privacy concerns related to personal data on Android

smartphones. The system enables several users to train mod-

els on their individual devices and exchange only the model
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Fig. 3. General pipeline of backdoor attack.

parameters, rather than the raw data. A central server initi-

ates the global model and combines updates to the model pa-

rameters from the participants across numerous rounds. This

method significantly reduces the amount of data transmit-

ted and mitigates privacy threats, making it appropriate for

situations that involve sensitive data. However, it also faces

challenges such as communication efficiency, security, and

heterogeneity

a) Attack purpose: By using malicious clients, a backdoor

is implanted into the aggregation server, enabling it to

achieve high accuracy on both the main task and the

backdoor task.

b) Attacker’s capability: The attacker can full control the

compromised participants, including the local training

data, the local training procedure, the hyperparameters,

and can modify the weight of the resulting model before

uploading it to aggregate. It can add triggers to benign

samples to construct backdoor samples and use these

samples to train clients, thereby executing backdoor at-

tacks in FL. However, it cannot control the aggregation

algorithm used to combine participants’ updates into the

aggregation model, nor any aspects of the benign partic-

ipants’ training.

c) The general pipeline of backdoor attacks in FL: The

process of backdoor attacks in FL is illustrated in Fig. 5.

The attacker first poisons one or more clients within the

client group. Then, by leveraging the FL process, the

attacker implants a trigger into the aggregation server

Gt, thus executing a backdoor attack on the aggregation

server.

d) Problem formalization: Formally, the objective that needs

to be optimized in a federated learning backdoor attack

can be represented by (2). Here, Lclass denotes the accu-

racy of both the main task and the backdoor task, while

Lano represents any type of anomaly detection. This is a

constrain-and-scale question [19]

Lmodel = αLclass + (1 − α)Lano (2)

Bagdasaryan et al. [19] expanded backdoor attacks to the

field of FL. Due to the large number of participants in FL,

it is challenging to ensure the absence of malicious partici-

pants. Moreover, FL is vulnerable to data poisoning and cannot

use anomaly detection. To address these issues, they proposed

the model replacement method, which ensures minimal im-

pact on FL while allowing attackers to manipulate the model

to implement backdoor attacks. Additionally, they introduced

semantic backdoors, which use specific features as triggers and

do not require attackers to modify the model’s input during

inference, yet can cause misclassification of the original inputs.

The effectiveness of the proposed methods was demonstrated

in image classification and word prediction tasks. Subsequently,

Wang et al. [21] introduced edge-case backdoor attacks, which

use rare inputs as triggers (i.e., the edge cases of input data).

To minimize the divergence between the attack model and

the global model in these situations, the authors employed

projected gradient descent (PGD) to train the attack model.

The researchers conducted experiments on tasks such as image

classification, optical character recognition (OCR), text pre-

diction, and sentiment analysis to demonstrate the efficacy of

the proposed method. Bhagoji et al. [36] addressed the lack of
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Fig. 4. Taxonomy of backdoor attacks.

transparency in agent updates by proposing the model poisoning

attack, where attackers control the entire training process but

only for one or a few participants. They poison the model’s

weight updates and transmit them back to the server, causing

the global model to misclassify individual inputs. Xie et al.

[37] introduced a distributed backdoor attack and compared it

with the approach in [19]. The results showed that their method

was more effective and persistent. Additionally, they tested

the distributed backdoor attack against two advanced FL algo-

rithms designed to defend against centralized backdoor attacks,

demonstrating the stealthiness of their proposed attack. In addi-

tion, they further explained the robustness of the attack through

Grad-CAM visualization and soft decision tree. Chen et al.

[38] proposed a target-efficient clean backdoor (TECB) attack

against vertical federated learning (VFL). The attacker trains

the backdoor trigger and poisons the model during VFL train-

ing, followed by further fine-tuning to enhance its effective-

ness in complex multiclassification tasks. Naseri et al. [39]

proposed a backdoor attack in VFL called BadVFL. This attack

adjusts the feature embeddings of poisoned samples belonging

to the target class, aiming to push the slightly perturbed data

of the target class towards the trigger-embedded data of the

source class in the feature embedding space. Zhuang et al.

[40] proposed layer substitution analysis for identifying critical

backdoor layers in FL, enabling more efficient backdoor attacks

while enhancing stealthiness.
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Fig. 5. Backdoor attack on federated learning [19].

Fig. 6. Backdoor attack on deep reinforcement learning [44].

2) Backdoor Attacks Against Deep Reinforcement Learn-

ing: Reinforcement learning (RL) is a branch of machine learn-

ing that focuses on how to act in response to the environment to

maximize expected rewards [41]. By incorporating deep learn-

ing algorithms into reinforcement learning, the field of “deep

reinforcement learning” (DRL) emerges. Deep learning allows

reinforcement learning to tackle decision-making problems that

were previously intractable, particularly those involving high-

dimensional state and action spaces [42].

a) Attack purpose: Let S† denote a set of target states and

a† represent a target action. The attacker aims to inject

a trigger into the state s ∈ S† when the agent encounters

any target state during the testing phase, misleading the

agent into selecting a specific target action a† as part of

a backdoor policy. If no trigger is present, the attacker

expects the backdoor policy to retain the performance of

the optimal policy in a clean environment. This ensures

that the backdoor policy behaves the same as the clean

policy when no attack occurs.

b) Attacker’s capability: The attacker can disrupt the train-

ing and testing data during the online interactions be-

tween the victim’s RL agent and the environment.

c) The general pipeline of backdoor attacks in DRL: Fig. 6

illustrates the process of a backdoor attack in DRL. Since

the memory of the agent does not last long, the back-

door functionality is designed to fail in as few steps as

possible. To achieve this, adversarial training and reward

manipulation are used to train a fast-failing policy as the

trigger policy. Concurrently, an empty policy learns from

the trajectory of the trigger policy and the winning policy

through imitation learning, ultimately developing into the

victim policy.

d) Problem formalization: Taking [43] as an example,

the backdoor attack during the training phase can be

formulated as the (3). The first constraint is used to limit

the proportion of data poisoned by the attacker. The sec-

ond constraint indicates that when the agent encounters

any target state s ∈ S† during the testing phase, injecting

a trigger into state s will mislead the agent into selecting

a specific target action a† to implement the backdoor

policy. The third constraint is used to ensure the accuracy

of the main task

min
s̃1:T ,ã1:T ,r̃1:T

Es0∼µ0

[

Ṽ π̃T (s0)
]

s.t.

T
∑

t=1

1 [(st, at, rt) 6= (s̃t, r̃t, ãt (at)]≤ ǫT

π̃T (s+ δ) = a†, ∀s ∈ S†

Es0∼µ0

[

V π̃T (s0)
]

=Es0∼µ0

[

V π∗

(s0)
]

(3)

where Ṽ π̃T (s0) is the cumulative reward obtained over

T rounds by the victim agent following policy π under a

backdoor attack during the testing phase. st denotes the

original state of the agent at round t, while s̃t denotes

the trigger-embedded state. at represents an action and

ãt represents the attacker-modified action. rt means the

reward and r̃t means the perturbed reward. δ denotes the

trigger.

Kiourti et al. [45] introduced a tool for exploring and evalu-

ating backdoor attacks on deep reinforcement learning agents,

named TrojDRL. In this approach, attackers can only modify

the states, actions, and rewards communicated between the

agent and the environment. Experimental results demonstrate

the effectiveness of this method for both targeted and non-

targeted attacks. Chen et al. [46] investigated a novel back-

door attack paradigm known as MARNet within the framework

of cooperative multiagent reinforcement learning (CMARL).

MARNet attaches triggers to the environment and allows agents

to naturally observe the triggers. In addition, MARNet utilizes

the worst-case action policy to amplify the implications of

malicious activities by specific agents. This policy typically

leads to reduced utility compared to nonoptimal action policies.

Wang et al. [44] observed that previous attacks were restricted

to simple DRL situations. Therefore, they expanded the scope

of backdoor attacks to encompass more complex RL systems

that involve multiple agents. A new attack approach called

BACKDOORL was introduced for competitive reinforcement

learning systems. The objective of this method is to surrepti-

tiously incorporate hidden functionality into the victim’s policy

by altering the triggering behaviors of the victim agent. This

allows for the activation of hidden functionality, resulting in a

decrease in the victim’s success rate. Cui et al. [43] proposed

a new method called BadRL, which focuses on performing

highly sparse backdoor poisoning during both training and
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Fig. 7. Backdoor attack on transfer learning [47].

testing while maintaining successful attacks. BadRL strategi-

cally selects states with high attack values to inject triggers

during training and testing, thereby reducing the chances of

detection.

3) Backdoor Attacks Against Transfer Learning: In some

deep learning scenarios, the cost of learning from scratch in

the target domain is prohibitively high. Therefore, there is an

expectation to leverage existing relevant knowledge to expedite

the acquisition of new knowledge. Transfer learning involves

using weights from a pretrained neural network in a new model.

This process accelerates and optimizes learning by leveraging

the correlation between data or tasks. In simpler terms, it seeks

to enhance the performance of target learners in target domains

by leveraging knowledge from different but related source do-

mains [48].

a) Attack purpose: Similar to traditional backdoor attacks,

it is necessary to achieve normal predictions on clean

samples while misclassifying samples with triggers as

the target label. Additionally, the backdoor implantation

should be completed through transfer learning without

altering the student model’s training data or process.

Furthermore, from the perspective of the student model

trainer, the attack should be stealthy enough, and using

the infected teacher model in transfer learning should

show no noticeable differences from using other clean

teacher models.

b) Attacker’s capability: The attacker can collect samples

with the same label as the backdoor target label from

sources other than the victim and embed triggers into

these data to train a backdoor teacher model. The attacker

then records the corresponding triggers (used to activate

the backdoor in the student model) and releases the in-

fected teacher model for future transfer learning.

c) The general pipeline of backdoor attacks in TL: Fig. 7

shows the process of a backdoor attack in transfer learn-

ing. Initially, a clean teacher model is retrained to include

a target and backdoor trigger, while the classification

layer is replaced to remove the target. This results in an

infected teacher model. During student training, transfer

learning is applied using the infected teacher model and

student data, leading to an infected student model.

d) Problem formalization: Following [47], the problem can

be formalized using the loss function (4) consisting of

two terms. The first term, ℓ(y, Fθ(x)), is the standard

loss function for model training. y is ground truth la-

bel and Fθ(x) denotes the teacher model. The second

term minimizes the difference between the intermediate

representations of the poisoned samples and the target

samples. D(.) measures the dissimilarity between two

internal representations in the feature space. ∆opt is the

optimized trigger. φθ represents the intermediate repre-

sentation of class yt recorded at layer Kt of the current

model Fθ(x). A(.) is a shorthand representation of (1).

λ is the weight that balances the two terms. Once the

optimization converges, the output is the infected teacher

model Fθ(x), in which the trigger (m,∆opt) is embedded

Jθ(θ;x, y) = ℓ (y, Fθ(x))

+ λ ·D
(

FKt

θ

(

A(x,m,∆opt)
)

, φθ

)

. (4)

To overcome the three common defenses—pruning-based,

retraining-based, and input preprocessing defenses—Wang

et al. [49] presented a unique backdoor attack. They used trans-

fer learning tasks on picture and time-series data, using the

information from publicly available teacher models. In addition,

they used three optimization techniques: 1) defense-aware re-

training; 2) the suggestion of an autoencoder-powered trigger

generating approach; and 3) a ranking-based selection mecha-

nism. These strategies were used to generate triggers and retrain

deep neural networks, addressing the feasibility of attacks un-

der more realistic constraints while defeating commonly used

defense measures. Li et al. [50] presented a novel backdoor

approach that was modified for transfer learning to defeat cur-

rent defenses. They created a technique that uses model gra-

dient information to reverse-engineer backdoor triggers. They

injected backdoor information into the convolutional layers and

erased backdoor information from the fully connected layers by

modifying the Triplets-Loss method, ensuring that the backdoor

model remained undisturbed after transfer learning while main-

taining the effectiveness of the backdoor attack. Matsuo et al.

[51] investigated the application of transfer learning to natural

images and examined whether backdoors may be transmitted

from neural models that have been pretrained on natural images.

They conducted relevant experiments, and the experimental

results indicated that, except for small-scale DNN models, the

backdoors typically remained effective after transfer learning

from natural images. This implies that in more practical transfer

learning scenarios, backdoor attacks may demonstrate signifi-

cant transferability.

4) Backdoor Attacks Against Swarm Learning: Swarm

learning is a data privacy protection framework that decentral-

izes machine learning systems using blockchain technology.

It combines the strengths of both distributed machine learn-

ing and blockchain technologies, with the advantages of equal

rights among nodes and enhanced security and fault tolerance.

Without the need for a central coordinator, swarm learning

is a decentralized machine learning technique that combines

blockchain-based peer-to-peer networks, edge computing, and

coordination while protecting data confidentiality [53].

Similar to backdoor attacks in FL, backdoor attacks in swarm

learning involve the attacker poisoning one or more nodes
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Fig. 8. Backdoor attack on swarm learning [52].

within the swarm network to implant a backdoor, as shown in

Fig. 8

a) Attack purpose: The clean sample accuracy (CSA) must

remain largely unaffected for normal data samples. How-

ever, for data samples with the backdoor implant, the trig-

ger should activate, resulting in incorrect classification.

This implies that the attack success rate (ASR) should be

high for the implanted samples. This objective is consis-

tent with traditional backdoor attacks.

b) Attacker’s capability: The attacker can control the lo-

cal training data and training procedure of the malicious

nodes. However, the attacker cannot alter the aggregation

rules and does not have the ability to tamper with the

training process or model updates of benign nodes.

c) The general pipeline of backdoor attacks in SL: As

shown in Fig. 8, in a SL network, there are multiple

nodes. Each node first needs to download an initial model

and then perform local training using its private data. An

attacker controls one or more of these nodes and injects

a backdoor into the nodes using poisoned data. In each

training round, each node has the potential to be selected

as a temporary leader for model aggregation (similar to

the aggregation server in FL). The leader node aggregates

the model parameters from all participating nodes by

averaging weighted parameters to obtain a new global

model. If a backdoored node is selected as the leader

during this process, the backdoored model will propagate

throughout the network and be averaged into the global

model. This backdoor will be implanted and inherited by

both the global model and the local models of the selected

nodes. After several rounds of training, the final global

model and each local model will contain the backdoor.

d) Problem formalization: In SL, backdoor attacks can be

formalized as (5).

argmin L(λ · CSA+ (1 − λ) · ASR) (5)

where L is the loss function for the model training, and

λ is a hyperparameter to balance CSA and ASR.

Chen et al. [52] conducted the first-ever study on security

threats in swarm learning and introduced pixel pattern backdoor

attacks targeting single-target and multitarget scenarios. The

former involves the implantation of a backdoor into a single

class, while the latter involves implanting a backdoor into mul-

tiple classes, resulting in classification errors by the model.

B. Backdoor Attacks Based on Different Applications

This section categorizes the application scenarios involved

in backdoor attacks based on the classification of deep learning

application scenarios as presented in [1], [54].

1) Computer Vision: The concept of backdoor attacks was

initially proposed in the field of computer vision. Gu et al. [8]

first introduced backdoor attacks in 2017, focusing on digit clas-

sification and traffic sign detection tasks. For the digit classifica-

tion task, they added a pixel block or a group of pixel blocks as

triggers in the bottom-right corner of the images. For the traffic

sign detection task, they replaced the stickers at the bottom of

the traffic signs with yellow squares, an image of a bomb, or

an image of a flower as triggers. They ran several experiments

to show the efficacy of the suggested backdoor approach using

a baseline model that has two convolutional layers and two

fully connected layers. This approach ensured the accuracy of

the model (highlighting the stealthiness of the backdoor) while

achieving the objective of misclassification when the attacker

input specific content (i.e., the trigger). Despite the effective-

ness of their suggested attack, certain limitations remained such

as the triggers’ easy visual observation by humans.

Afterward, there has been a significant proliferation of back-

door attacks in the field of computer vision. Yuan et al. [12]

designed a new backdoor attack framework called BadViT for

vision transformers (ViTs) and its invisible version (i.e., an en-

hanced version). They showed improved attack transferability

on different downstream datasets. Liao et al. [14] designed two

invisible perturbation masks as backdoors: the patterned static

perturbation mask and the targeted adaptive perturbation mask.

They also proposed three scenarios for injecting backdoors, and

these three scenarios further confirmed the effectiveness and

universality of the proposed attack. Li et al. [55] considered

that most existing backdoor defense methods are based on the

characteristic that backdoor triggers are unrelated to samples,

and they proposed a novel sample-specific backdoor attack,

where the backdoor triggers are linked to the samples, mak-

ing the triggers more flexible and difficult to detect. Li et al.

[56] introduced two types of invisible backdoor attacks, one

based on bit-level trigger steganography and the other based

on trigger generation with invisible regularization. The former

utilizes static triggers based on the least significant bit (LSB),

while the latter employs dynamic triggers with regularization to

ensure sufficient concealment. Liu et al. [57], inspired by reflec-

tions in natural phenomena, introduced the reflection backdoor

(Refool) attack. This method uses a reflection model to generate

backdoor images (original images are not restricted to selecting

from the original training set) and combines them with clean
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images to create the complete training set (containing back-

doors). Turner et al. [58] proposed two methods, latent space

interpolation and adversarial perturbations, to inject seemingly

reasonable but difficult-to-classify inputs, making the model

rely on backdoor triggers and thus making the backdoor attack

harder to detect.

Besides, Feng et al. [59] conducted the first-ever study on

backdoor attacks in the context of medical imaging patterns

and medical image analysis. They proposed a frequency-based

attack approach. In their research, they redefined the injec-

tion function in the frequency domain, injecting low-frequency

information from trigger images into poisoned images while

preserving pixel semantics for the attack. Nwadike et al. [60]

explored the impact of backdoor attacks on multilabel disease

classification tasks using chest radiography. Attackers inserted

images with backdoor triggers into the training dataset without

participating in the training process, and still managed to suc-

cessfully execute the backdoor attack. Matsuo et al. [61] studied

two forms of backdoor attacks, target attacks and nontarget

attacks, using small triggers in the COVID-Net model. They

demonstrated that backdoor models can propagate through fine-

tuning. Lan et al. [62] explored backdoor attacks on segmen-

tation models and introduced the influencer backdoor attack

(IBA), which executes backdoor attacks by injecting specific

triggers into nonvictim pixels during the inference process.

Specifically, they proposed two attack forms: free-position IBA,

which utilizes nearest neighbor injection (NNI) to enhance the

attack’s effectiveness, and long-distance IBA, which employs

pixel random labeling to improve the attack’s efficacy.

2) Natural Language Processing: Kurita et al. [63] focused

on whether the pretrained weights can constitute an attack and

proposed weight-poisoning based backdoor attacks, achieving

high attack success rates even without access to training datasets

or hyperparameter settings. Li et al. [9] proposed two novel

backdoor attack methods: homograph backdoor attacks and dy-

namic sentence backdoor attacks. As the name suggests, the first

method uses visually similar characters to construct triggers

that deceive manual inspection, which falls under static trig-

gers. The second method utilizes language models to generate

trigger sentences, which are dynamic triggers. Chen et al. [11]

construct triggers at three levels: character, word, and sentence.

For character-level triggers, they propose two methods: the first

is simple random replacement, and the second is replacement

through steganography (similar to homograph backdoor attacks

in [9]) to achieve visual deception. For word-level triggers, three

methods are proposed: selecting a specific word as the trig-

ger, which is a static trigger; using masked language modeling

(MLM) and MixUp to generate context-aware and semantically

preserved triggers, which is a dynamic trigger and shows better

performance; and selecting synonyms for replacement, which

is also a static trigger but retains some original semantics. For

sentence-level triggers, the first method uses a fixed sentence

as the trigger, while the second method modifies the sentence

structure based on two grammar rules of tense and voice to

construct the trigger while preserving the original semantics,

demonstrating some innovation. Zhang et al. [10] introduced

two methods of trigger generation: basic triggers and logical

triggers. Basic triggers are sets of seed words that are embedded

into a sentence as the trigger, thus maintaining relatively good

fluency and naturalness. Logical triggers, on the other hand, de-

fine triggers using logical connections between words, utilizing

logical connectors such as “and,” “or,” and “xor,” where triggers

are defined as combinations of specified words and logical

connectors. For example, defining a trigger t = (word1, word2,

“and”) means that the backdoor attack can only occur when both

word1 and word2 are embedded in the sentence simultaneously,

which enhances the controllability of the attack. Yang et al. [64]

proposed a data-free backdoor attack using gradient descent,

and a super word embedding vector was obtained as the embed-

ding for the trigger word. The attack modifies only the trigger

word embedding to perform a data-free backdoor attack. The

advantage of this method is that it can launch an attack without

any task-related datasets and requires very few modified param-

eters, further simplifying the attack process. Kwon et al. [65]

used “ATTACK” as a trigger word, added it to the beginning of

the original sentence, and then used it in conjunction with clean

samples for model training. Clearly, this is a more basic form of

attack since it alters the sentence’s semantics and can be easily

detected by current defense methods. Pan et al. [66] introduced

a backdoor attack that generates triggers through language style,

making it the first dynamic and style-based backdoor attack

when attacking pretrained language models. Attack evasion un-

der filtering and inversion-based defenses is evaluated through

experiments. Specifically, they use text style transfer models

to generate attack-specified trigger sentences, and each basic

sentence is dynamically disambiguated to preserve the trigger

style, significantly reducing the correlation between triggers

and classification errors. Li et al. [67] proposed a stealthy input-

independent backdoor attack, known as BGMAttack, which

employs a black-box generative model as an implicit trigger.

They create poisoned datasets by selecting target labels and

trigger insertion functions, and they control the quality of the

generated samples, enhancing the stealthiness of the backdoor

attack

Backdoor attacks are extensively studied not only in tra-

ditional NLP tasks but also in the domain of large language

models (LLMs) with the rise of generative AI, where many

related works are actively being conducted. Wei et al. [68]

proposed LMSanitor, which performs accurate and rapid output

monitoring and input sanitization during the inference stage by

reversing task-agnostic backdoor predefined attack vectors and

leveraging the characteristic of immediate tuning on frozen pre-

trained models. Zhao et al. [69] designed a new backdoor attack

called ICLAttack, which can manipulate the behavior of large

language models by poisoning the demonstration context with-

out the need for model fine-tuning. Xiang et al. [70] propose

BadChain, the first backdoor attack against LLMs employing

COT prompting, which does not require access to the training

dataset or model parameters and imposes low computational

overhead. Yan et al. [71] introduced virtual prompt injection

(VPI), which allows attackers to exert fine-grained and persis-

tent control over the behavior of large language models by using

various virtual prompts and trigger scenarios. Struppek et al.

[72] introduce backdoor attacks against text-guided generative
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models and demonstrate that their text encoders pose a ma-

jor tampering risk. Li et al. [73] introduced BadEdit, a novel

method for injecting backdoors into large language models

by directly editing model parameters, which can learn hidden

trigger-target patterns using limited data instances and com-

putational resources. Nie et al. [74] proposed TrojFM, which

can launch task-agnostic attacks under very limited resource

constraints by fine-tuning a small subset of model parameters.

Zhu et al. [75], inspired by the mechanism of optical polarizers,

proposed a novel backdoor defense method. This method in-

volves inserting learnable neural polarizers (a lightweight linear

transformation layer) into the backdoored model as an interme-

diate layer to purify poisoned samples by filtering out trigger

information while retaining benign information. Hubinger et al.

[76] aim to test whether LLM developers can eliminate such

strategies using current mainstream safety training paradigms,

such as supervised fine-tuning and reinforcement learning, and

to explore the effectiveness of these safety training techniques.

Liang et al. [77], from the perspective of Bayesian rules, pro-

posed a dual-embedding guidance framework for backdoor at-

tacks, which makes visual trigger patterns approach the textual

target semantics in the embedding space. Lu et al. [78] proposed

AnyDoor, a test-time backdoor attack targeting multimodal

large language models (MLLM). This method involves using

adversarial test images (sharing the same universal perturba-

tion) to inject backdoors into the text modality without access-

ing or modifying the training data. Liang et al. [79] proposed a

multimodal instruction backdoor attack called VLTrojan. This

method facilitates image trigger learning through isolation and

clustering strategies and enhances the efficiency of black-box

attacks using an iterative character-level text trigger generation

method.

3) Speech Recognition: Speech recognition is an important

branch of artificial intelligence aimed at converting speech sig-

nals into text form. It enables computers to understand and

process speech inputs, thereby achieving conversion between

speech and text. Speech recognition has widespread applica-

tions in various fields, including voice assistants (such as Siri,

Alexa, and Google Assistant), speech transcription, call center

systems, speech translation, voice control, and voice search,

among others.

Ye et al. [15] proposed a method called DriNet, focusing

on dynamic backdoor attacks on speech recognition models.

Specifically, this method adds random noise and uses gradient

information during the iterative optimization phase to generate

dynamic triggers. These triggers are then combined with a clean

dataset and used to train the model, involving only malicious

manipulation of the dataset. Kong et al. [16] introduced a novel

audio steganography technique using a private speech recogni-

tion model to train original audio signals and generate stego

audio containing hidden information. This stego audio can be

used to launch backdoor attacks on speech recognition models

without the need for decryption units and key storage, thus re-

ducing the attack overhead. Zhai et al. [17] creatively proposed

a cluster-based attack approach, considering the possibility that

the labels of utterances during the enrollment process might not

necessarily match those of any training utterances. Moreover,

in this approach, the triggers for poisoned samples in different

clusters are also distinct from each other. Koffas et al. [18]

conducted the first study on triggers above 20 kHz, which are

inaudible to human ears, making them highly covert. They used

these inaudible triggers to successfully attack Android applica-

tions, demonstrating the significant real-world threat posed by

their proposed method. Cai et al. [80] utilized sound elements

(such as pitch and timbre) to design more covert but effective

pure poison backdoor attacks. They manipulated the timbre

features of the victim’s audio to create timbre-based stealthy

attacks and designed a voiceprint selection module to facilitate

multibackdoor attacks.

In summary, we have provided a detailed overview of re-

search on backdoor attacks in three domains: computer vision,

natural language processing, and speech recognition. Research

in the first two domains is more extensive and in-depth. With

the rapid development of artificial intelligence, new technolo-

gies, models, and scenarios continue to emerge. Investigating

backdoor attacks in these new dimensions not only broadens

researchers’perspectives but also helps to mitigate security risks

and enhance the security defenses of AI applications.

C. Backdoor Attacks Based on the Attacker’s Knowledge

In this section, we assume ourselves to be attackers and

consider what prior knowledge we would have when conducting

a backdoor attack. This leads to the classification presented

below. Through such categorization, on the one hand, we can

delve deeper into the study of attack methods within these

categories or explore innovative attack approaches. On the other

hand, starting from these classifications, we can also research

corresponding general defense methods.

1) Require Knowledge of Training Data: Chan et al.

[81] proposed four forms of backdoor attacks specifically for

object detection. The fundamental principle involves altering

the true labels of backdoor samples and then training with a

regular model. This constitutes a relatively elementary form

of backdoor attack. Chen et al. [82] proposed two methods for

implanting backdoors, namely, “input-instance-key” and

“pattern-key.” The former establishes a connection between

input images and target labels, while the latter employs

a specific element as a trigger, where samples containing

this element are treated as backdoor samples. Gao et al.

[83] discovered that deep neural networks (DNNs) exhibit

varying learning capabilities for different training samples,

with more robust features being learned more easily. This

phenomenon affects the connection between backdoor samples

and target labels. Consequently, they proposed attacking

with samples containing less robust features to enhance

clean-label backdoor attacks. Tao et al. [84] demonstrated

that optimizing the product of the mask and perturbation

vector is not straightforward. Therefore, they chose to directly

optimize the perturbation vector, using the tanh function to

achieve both minimal perturbation and high attack success

rates. Saha et al. [85] utilized small patches as triggers,

but the generated poisoned images and clean images were

visually nearly indistinguishable, differing primarily in the
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feature space. Consequently, this attack manages to evade

some manual inspection visually. Quiring et al. [86] combined

image scaling attacks with backdoor attacks, allowing images

to be scaled to specific resolutions in order to reduce the

likelihood of trigger discovery. Barni et al. [87] proposed

an unlabeled poisoning backdoor attack, where the labels

of the samples are not tampered with; instead, the samples

are undermined by adding a backdoor signal to mislead the

classifier. This approach can circumvent defenses that rely on

the match between samples and labels. However, this method

requires undermining a large number of target samples, and

the selection of a more appropriate backdoor signal is also

a consideration that needs further attention. Dai et al. [88]

addressed the drawbacks of existing image backdoor attacks,

which require high costs and suffer from trigger detectability

and pruning issues. They designed a UGBA framework that

selects more appropriate injection nodes to further reduce the

attack budget. By utilizing an adaptive trigger generator, they

achieved imperceptible backdoor attacks. Wenger et al. [89]

extended triggers from traditional settings to everyday objects

in real-life scenarios, deepening the potential harm of backdoor

attacks in the real world, especially in the context of widely

used face recognition technology. Jia et al. [90] introduced

the first backdoor attack targeting self-supervised learning.

Leveraging the characteristics of self-supervised learning, they

initiated the attack from the first component, injecting the

backdoor into the pretrained encoder, thereby implanting a

backdoor into downstream tasks as well. Zheng et al. [91],

from a motif perspective, designed a novel motif-based attack

method. As motifs contain various structural information,

this attack method offers some interpretability regarding

the effectiveness of backdoor attacks. However, this method

exposes its attack behavior more readily during shadow model

construction, thus increasing the risk of detection.

2) Require Knowledge of Model: Yao et al. [47] introduced

a method of implanting latent backdoors in a teacher model and

then activating these backdoors in a student model using trans-

fer learning. This approach permits manipulation only of the

teacher model. The underlying idea is to establish a connection

between the trigger and intermediate representations and inject

the trigger into layers of the teacher model that are unaffected

by transfer learning. Yu et al. [92] developed a frequency-

based backdoor attack targeting discrete cosine transformation

(DCT). This method requires modifying only the parameters

of the encoder in a compression model while keeping the en-

tropy model and decoder fixed, enhancing its practicality. They

also designed a straightforward dynamic loss function to make

training more efficient. Huang et al. [93] proposed a training-

free lexical backdoor attack. The most significant feature of

this method is that it does not require owning a dataset or

expending resources on model training. Instead, the attack is

carried out by modifying model parameters or tampering with

model components. Liu et al. [94] introduced a Trojan attack

method targeting neural networks. In this approach, triggers

are generated by maximizing the activation of specific neurons,

and training data is generated by reverse-engineering inputs that

lead to strong activation of desired output nodes. Then, triggers

and training data are used to retrain the model and implant the

Trojan horse backdoor. [95] is the first backdoor attack targeting

graph neural networks (GNNs). Attackers manipulate model

parameters to construct a backdoor model, setting specific sub-

graphs as triggers. Lv et al. [96] employed a task-agnostic

substitute dataset to create a backdoor model. They optimized

the dataset by removing benign examples and then injected a

backdoor through the loss function while maintaining model

performance. Doan et al. [97] extended backdoor attacks to

latent representations and introduced the Wasserstein backdoor

attack framework. This framework involves injecting imper-

ceptible noise into images to generate triggers and employs

the Wasserstein distance formula to optimize the difference

between clean and backdoor images in the latent space.

3) Require Knowledge of the Model Training Process:

Salem et al. [98] proposed three backdoor attack methods.

The first is the random backdoor, which constructs triggers by

sampling from a uniform distribution and then inserting them at

random positions in the input. The second is the backdoor

generating network, which employs a generative network to

automatically construct backdoor triggers. The third is the con-

ditional backdoor generating network, capable of generating

triggers specific to certain labels. [99] is a neuron-level back-

door attack, which is a method designed for pretrained models.

It allows control over trigger instance predictions without know-

ing the downstream tasks. The trigger used in [100] is a sample-

specific trigger, aiming to create an input-aware backdoor sys-

tem. Triggers are generated using an encoder and decoder.

Lin et al. [101] introduced a composite attack method. This

approach creates poisoned samples by blending benign features

or objects from trigger labels. The modified dataset is then used

to retrain portions of a pretrained model. Chou et al. [102]

conducted the first study on backdoor attacks against diffusion

models, introducing BadDiffusion. This method requires mali-

cious modifications to the data and forward/backward diffusion

steps, disrupting the diffusion process during the training of the

model with an implanted backdoor. Doan et al. [103] proposed

a novel and imperceptible backdoor attack framework named

LIRA. They treat backdoor attacks as nonconvex constrained

optimization problems and implant the backdoor during the

model training process.

In this section, we have classified backdoor attacks into three

levels from the knowledge of attackers. This classification helps

us understand the specific targets of backdoor attacks during

their implementation. Moreover, it serves as a basis for further

refining the granularity of attacks. As we can see, the objects

of backdoor attacks can generally be categorized as datasets

and models. In other words, throughout the entire lifecycle of a

model, wherever there is involvement with these two elements

or either of them, there exists potential space for backdoor

attacks. How to further optimize attacks and innovate trigger

design and backdoor implantation methods remains an impor-

tant and valuable area of research.

D. Other Types of Backdoor Attacks

In this section, we classify and compare backdoor attacks

based on whether the original sample labels have been modified
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TABLE II
CLASSIFICATION OF BACKDOOR ATTACKS BY LABEL AND TRIGGER VISIBILITY

Label Trigger

Dirty Clean Visible Invisible

[8], [9], [10], [11], [12], [14], [15], [16], [17],
[19], [21], [37], [39], [40], [47], [49], [50],

[52], [55], [56], [59], [61], [62], [63], [64], [65], [66],
[67], [69], [70], [71], [72], [73], [77],

[78], [79], [80], [81], [82], [89], [90], [92],
[94], [97], [98], [99], [100], [101], [102], [103],

[104], [105], [106], [107], [108], [109], [110], [111],
[112], [113], [114], [115], [116], [117], [118], [119],

[120], [121], [122], [123]

[38], [46], [57], [58],
[83], [85], [86], [87],

[124], [125],
[126], [127]

[8], [9], [10], [12], [19], [21], [37], [38], [39],
[40], [46], [49], [50], [57], [58],
[63], [64], [66], [67], [71], [69],
[70], [73], [77], [78], [79], [81],

[82], [83], [85], [87], [89], [90], [94],
[98], [99], [100], [101], [102],

[104], [105], [106], [107], [108],
[110], [113], [116], [117], [124]

[11], [14], [55], [56],
[72], [74], [86], [92],

[97], [103], [109], [112],
[114], [118], [119], [120],
[121], [122], [125], [123],

[126], [127]

and whether the designed triggers are invisible. Representative

works are listed in each part, while the rest are included in a

Table II.

1) Dirty-Label Backdoor Versus Clean-Lable Backdoor:

Dirty-label backdoor attacks add triggers to some benign train-

ing images and change their labels to the target label, thereby

associating the trigger with the target label during the training

phase. The first work on backdoor attacks, Badnets [8], is a

type of dirty-label attack that performs the attack by adding

pixel triggers to the training set while modifying the original

labels. Liao et al. [14] added generated perturbation masks to

the original images and then associated samples with the same

perturbation masks to the same target class labels. Li et al.

[55] encodes the string specified by the attacker into a benign

image, generating a sample-specific invisible additive noise as

a backdoor trigger. When the DNN is trained on a poisoned

dataset, it learns a mapping from a string to a target label. In

FL, Bagdasaryan et al. [19] directly introduced pairs of trigger-

embedded training features and the adversary’s desired class

labels into the training data to establish a connection between

the trigger-embedded input and the target class label.

Unlike dirty-label backdoor attacks, clean-label backdoor

attacks do not require changing the sample labels when im-

planting triggers. Turner et al. [58] proposed the first clean-label

attack, using adversarial perturbations and generative models to

perform efficient and label-consistent backdoor attacks. Ning

et al. [127] designed noise triggers that are highly effective

in the feature space, allowing the poisoning of training data

without the need to modify data labels. Yu et al. [126] provided

generalization bounds for clean-label backdoor attacks, offering

a theoretical foundation for such attacks. Based on this, they

proposed a novel attack method that uses a combination of

adversarial noise and indiscriminate poison as triggers, achiev-

ing a high attack success rate. Huynh et al. [125] proposed a

novel clean-label attack mechanism called Clean-label Opti-

Mize Backdoor Alternated Training, abbreviated as COMBAT.

COMBAT uses an alternating training process to alternately

optimize the generator and the surrogate model, aiming to

maximize the poisoning effect of the generator. Chen et al.

[38] proposed the TECB, where the adversary trains a trigger

locally while training the VFL model. This trigger includes

key features of the backdoor target class. The attacker then

injects the generated trigger into the VFL model. Consequently,

when samples containing this trigger are used with the VFL

model, they are misclassified as the target class. Naseri et al.

[39] proposed a novel VFL clean-label backdoor attack named

BadVFL. In this attack, the attacker cannot manipulate labels

and can only access feature embeddings. BadVFL locates the

source and target classes of the attack by using model extraction

and identifies the training data instances of these two classes.

It then disrupts some training instances of the target class,

dragging them near the instances with embedded triggers in the

source class to achieve backdoor implantation.

2) Visible Backdoor Versus Invisible Backdoor: Visible

backdoor means that the triggers added to the samples are

visible to people. As the initial backdoor attack, Badnets [8]

designed triggers that included a yellow square, a bomb, and a

flower, all of which were easily noticeable. Subsequently, Chen

et al. [82] proposed a hybrid injection strategy that generates

poisoned and backdoor instances by mixing benign input exam-

ples with key patterns. Barni et al. [87] used backdoor signals

to create backdoor samples. Liu et al. [57] used mathematical

modeling of physical reflection to embed reflections as back-

doors into the victim models. The created backdoor samples

are visually noticeable.

Invisible backdoor, as the name suggests, refers to triggers

that are difficult for humans to discern. In this case, the triggers

could be very subtle perturbations or feature-level triggers.

Nguyen et al. [123] discovered the difference between human

and machine recognition of subtle image distortions, where

machines are more susceptible to recognizing image distor-

tions than humans. Based on this observation, they proposed

a method to generate invisible backdoor triggers using elastic

image distortion. Qi et al. [122] used syntactic structures as

triggers for text backdoor attacks. This method achieves compa-

rable attack performance to insertion-based approaches (nearly

100% success rate), but with higher stealthiness and stronger

defense capabilities. Wang et al. [121] proposed a simple yet ef-

fective and stealthy black-box backdoor attack, FTrojan, based

on frequency domain trojans. The key insight is that perturba-

tions triggered in the frequency domain correspond to small

pixel-level disturbances distributed across the entire image,

which breaks the fundamental assumptions of existing defenses

and makes poisoned images visually indistinguishable from
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Fig. 9. Taxonomy of backdoor detections.

clean ones. Gao et al. [120] proposed a dual stealthy backdoor

attack method called DUBA, which simultaneously considers

the invisibility of triggers in both spatial and frequency domains

to achieve optimal attack performance while ensuring strong

stealthiness. First, high-frequency information of the trigger

image is embedded into a clean image using wavelet transforms

to ensure attack effectiveness. Then, to achieve strong stealth-

iness, the method combines Fourier and cosine transforms to

blend the poisoned and clean images in the frequency domain.

Ning et al. [127] proposed a novel data poisoning backdoor

attack called “Invisible Poison.” It transforms regular triggers

into noise triggers that can be easily hidden within images

used to train neural networks, thereby implanting backdoors.

Li et al. [119] introduced an easy but powerful backdoor attack

targeting video data. The proposed attack adds perturbations

in the transform domain, embedding imperceptible, temporally

distributed triggers within video frames, and has been shown

to be resilient against existing defense strategies. To achieve

invisible backdoored point clouds, Fan et al. [118] proposed

a novel 3-D backdoor attack called IBAPC. Leveraging the

advantages of graph signals, it induces global structure and local

point pair deformations in the spatial domain. Point clouds are

transformed into graph spectral signals to embed the backdoor

trigger. Cai et al. [80] inserted a short-duration highpitched

signal as a trigger and increased the pitch of the remaining audio

clips to “mask” it, thereby designing a pitch-based stealthy

trigger.

IV. TAXONOMY OF BACKDOOR DETECTIONS

In this section, we classify existing backdoor detection meth-

ods based on the timing of detection and the detection objects.

The taxonomies and articles are shown in Fig. 9.

A. Backdoor Detection Based on the Timing of Detection

1) Backdoor Detection During the Training-Time: An-

dreina et al. [128] proposed a novel approach named BaFFLe,

where client-side verification is employed to ascertain whether

the global model has been compromised by a Trojan. This is

achieved through a feedback loop-based voting mechanism that

determines whether to discard the current round’s global model.

Benchmark testing revealed that the aggregator is capable of de-

tecting inconsistencies among clients. However, BaFFLe cannot

be initially deployed and is only viable after several hundred

rounds to avoid generating numerous false positives, and it

lacks authenticated guarantees of robustness. Chen et al. [129]

formulated trigger recovery as an optimization problem. The

objective function is designed to find perturbations to the state

representation that force the agent to take actions maximizing

its value function. Since the backdoored agent is trained using

a poisoned reward function that assigns high values in the pres-

ence of a trigger, maximizing its value function should identify

the trigger.

2) Backdoor Detection During the Run-Time: Li et al. [130]

observed that existing backdoor attacks possess an uninten-

tional and unavoidable inherent weakness, namely nontransfer-

ability. Therefore, they proposed a nontransferability backdoor

detection technique to detect trigger inputs in test models at

runtime. Chen et al. [129] designed additional regularization

terms for the fine-tuning objective function to maintain the

actual reward of the fine-tuned agent in a clean environment.

They also introduced a neuron reinitialization mechanism to

ensure the successful removal of the backdoor, even if the

recovered trigger is not exactly the same in shape and size as

the ground truth trigger. Fu et al. [131] proposed a data-efficient

detection method for defending against backdoor attacks on

deep neural networks in black-box scenarios. They introduced

five metrics—robustness, weakness, sensitivity, inverse sensi-

tivity, and noise invariance—to quantify the inherent differ-

ences between clean and poisoned samples. Several synthetic

samples were generated by injecting part of the input content

into clean validation samples. Then, the output labels of these

corresponding synthetic samples were used to calculate the

five metrics. Next, five novelty detectors were trained from the
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validation dataset. A meta-novelty detector fused the outputs of

the five trained novelty detectors to generate a meta-confidence

score. During online testing, the proposed method determined

whether an online sample was poisoned by assessing the meta-

confidence score output by the meta-novelty detector. Gao et al.

[23] introduced a runtime Trojan attack detection system called

STRIP. This system intentionally interferes with incoming in-

puts and observes the randomness of predicted categories to

detect Trojan triggers in deep neural network models. Gao et al.

[132] proposed the first multidomain trojan detection method

applicable to three types of tasks: visual, textual, and audio.

Specifically, their approach involves duplicating the input n

times and applying distinct perturbations to generate n samples

with different perturbations. They then used Shannon entropy

estimation to measure the randomness of predicted class prob-

abilities. If the entropy falls below a detection threshold, it

indicates the presence of a trojan. In addition, backdoor attacks

typically cause models to exhibit statistically higher prediction

confidence on poisoned samples. Based on this, Wang et al.

[133] proposed a new defense for black-box backdoor attacks

called DTINSPECTOR. This method leverages the shortcut

nature of triggers (where a trigger acts as a shortcut that guides

inputs to the target label, and disrupting this shortcut alters high-

confidence data) to distinguish between trojaned models and

clean models.

B. Backdoor Detection Based on the Object

1) Backdoor Detection Based on the Sample: Liu et al.

[134] used a novel feature comparison technique called sym-

metric feature differencing (SFD) to detect triggers. Specif-

ically, they conducted experiments on two sets of samples:

1) clean victim samples and clean victim+inverted trigger sam-

ples; 2) clean victim samples+target samples. They employed

SFD to obtain feature difference masks for both sets of ex-

periments and compared them. When the masks were dissim-

ilar, they were considered to contain a backdoor. Fan et al.

[135] first proposed a novel RNN explanation technique by

constructing an abstract model based on nondeterministic fi-

nite automaton (NFA). This technique effectively reduces the

analysis complexity of RNNs while preserving their original

logical rules. Then, based on the abstract model, the explana-

tion results can be obtained, revealing the fundamental reasons

behind each input decision. Following this, they detect trig-

ger words by exploiting the differences in behavior between

backdoored sentences and normal sentences. Guo et al. [84]

observed a phenomenon called “scaled prediction consistency,”

where the predictions of attacked images are more consistent

than benign images. Based on this, they introduced the scaled

prediction consistency analysis (SCALE-UP) method, which

can defend against backdoors in both data-free and data-limited

scenarios. They used the proportion of labels consistent with

the input image in scaled images as a criterion to measure

whether the input content is harmful. If the dataset is overly

clean and lacks diversity, this method might be ineffective.

Wang et al. [136] proposed a posttraining defense method

that can detect backdoor attacks with any type of backdoor

embedding without making any assumptions about the type

of backdoor embedding. The detector leverages the influence

of backdoor attacks on the classifier’s output landscape before

the softmax layer, independent of the backdoor embedding

mechanism. For each class, the maximum margin statistics are

estimated. Detection inference is then performed by applying

an unsupervised anomaly detector to these statistics. Pan et al.

[137] proposed a new detection method called active separation

via offset (ASSET), which actively induces different model

behaviors between backdoored and clean samples to facilitate

their separation. The key idea is to design two optimizations

that elicit opposite model behaviors on the poisoned dataset

(including its clean and poisoned parts) and the clean base

set. Xue et al. [138] proposed a method that uses intentional

adversarial perturbations to detect whether an image contains

a trigger. This method can be applied during both the training

and inference stages (cleaning the training set during training

and detecting backdoor instances during inference). Specifi-

cally, a small set of clean images is used to generate a uni-

versal adversarial perturbation from the backdoored model.

For a given untrusted image, the adversarial perturbation is

intentionally added to the image. If the model’s prediction on

the perturbed image is consistent with its prediction on the

unperturbed image, the input image is considered a backdoor

instance. Ma et al. [139] proposed a new technique called

Beatrix (backdoor detection via gram matrices). Beatrix utilizes

gram matrices to capture not only feature correlations but also

appropriate higher order information of representations. By

learning the class-conditional statistics of activation patterns

for normal samples, Beatrix can identify poisoned samples by

detecting anomalies in the activation patterns. Li et al. [140]

proposed a novel method called prediction shift backdoor de-

tection (PSBD), which utilizes an uncertainty-based approach

and requires minimal unlabeled clean validation data. PSBD

identifies backdoor training samples by calculating prediction

shift uncertainty (PSU), which is the variance of probability

values when the dropout layers are turned on and off during

model inference. Wang et al. [141] proposed a defense mech-

anism for regression tasks based on DRL models for the first

time, named “Backdozer.” This method systematically extracts

more abstract features by projecting the representations of the

training data into a specific latent subspace and dividing them

into several nonoverlapping groups based on the distribution of

legitimate outputs. Guan et al. [142] utilized causal inference

to reveal the different mechanisms between clean generation

and backdoor generation processes. They concluded that small

perturbations in backdoor samples do not lead to substantial

changes in the generative outcomes of the diffusion model.

Tejankar et al. [143] train semisupervised learning (SSL) mod-

els on toxic data and use them to identify toxic samples. Qi

et al. [144] introduced a method that utilizes perplexity to

detect abnormal words (i.e., potential triggers) in sentences to

eliminate triggers. However, this method has significant lim-

itations, as many existing backdoor attacks have started to

use dynamic triggers with context-aware characteristics. Chen

et al. [145] discovered differences in the feature representa-

tions between clean and poisoned samples, specifically in their
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sensitivity to feature transformations, where poisoned samples

exhibited higher sensitivity. Therefore, they introduced feature

consistency toward transformations (FCT) as a method to de-

tect poisoned samples. Wei et al. [146] utilized the Jensen–

Shannon divergence between poisoned and original images to

adaptively determine the detection threshold. They then ap-

plied edge detection techniques to identify the trigger pat-

tern. Hayase et al. [147] amplify spectral features of poisoned

samples using covariance estimation, and then detect features

using quantum entropy scores. Feng et al. [148] introduced

the first backdoor detection approach for pretrained encoders

in self-supervised learning, capable of detection without ac-

cess to pretraining data or with partial datasets. However, this

method exclusively addresses visual encoders and static trig-

gers. Hou et al. [149] proposed input-level backdoor detection

named IBD-PSC based on parameter-oriented scaling consis-

tency (PSC), which observes that the prediction confidence of

poisoned samples is significantly more consistent than that of

benign samples when the model parameters are scaled up. Yuan

et al. [150] proposed SHINE, a backdoor shielding method

specifically for DRL. It detects backdoors by recovering the

triggers.

2) Backdoor Detection Based on the Model: Guo et al.

[151] proposed adversarial extreme value analysis (AEVA) to

detect backdoors in black-box neural networks. AEVA is based

on the extreme value analysis of adversarial graphs, calculated

using Monte Carlo gradient estimation. Huster et al. [152] pro-

posed that it is easier to transfer images in backdoor models

than in clean models. This applies to various models and trigger

types, including triggers that do not linearly separate from clean

data. This property can be used to detect backdoor models in

TrojAI benchmark tests and other models. Sun et al. [153] pro-

posed a method called semantic backdoor detection and mitiga-

tion (SODA) for systematic detection and removal of semantic

backdoors. The key idea involves lightweight causal analysis to

identify potential semantic backdoors based on the contribution

of hidden neurons to predictions. These backdoors are removed

by adjusting the contribution of responsible neurons to correct

predictions. Huang et al. [154] designed a one-pixel signature

representation to reveal the characteristics of clean CNN models

and backdoored CNN models. Each CNN model is associated

with a signature created by generating adversarial values on

a per-pixel basis, resulting in the maximum change in class

prediction. The one-pixel signature is independent of the design

choices and training methods of the CNN architecture. The sig-

natures of black-box CNN models can be effectively computed

without accessing the network parameters. Jiang et al. [155]

proposed a critical-path-based backdoor detector (CPBD) that

detects backdoor attacks through the interpretability of DNNs.

This method simplifies a DNN model into a set of critical paths

and establishes anomaly indicators to reveal hidden backdoors

in the DNN model by calculating the distances and anomaly

rates of these critical paths. Liu et al. [24] proposed a technique

called ABS, which uses stimulus analysis to scan AI models

based on neural networks to identify backdoors or Trojans

injected through training or transformation of internal neuron

weights. However, this method is affected by certain restrictive

assumptions related to the number of interacting neurons and

the trojan horse injection technique. Mo et al. [156] proposed

the first input detection method based on comparing distribution

probabilities, as well as a novel model detection method using

the KL divergence between adversarial and benign distributions

as a measure.

V. TAXONOMY OF BACKDOOR DEFENSES

In this section, we classified some existing defense methods

based on their usage stages and characteristics and provided

brief introductions along with some advantages and disadvan-

tages. The taxonomies and articles are shown in Fig. 10.

A. Multilevel Backdoor Defense Methods

Following the approach outlined in Liu et al. [117], we cat-

egorized defense methods into three levels.

1) Dataset-Level Defense: Tejankar et al. [143] proposed

PatchSearch, which quantifies poisoned images based on scores

and then iteratively searches for parts of the image with higher

scores. These parts are then ranked in descending order using

top-k selection. A trained binary classifier is constructed to

remove the poisoned samples from the dataset, thus purifying

the dataset. Finally, the model is retrained. This method can be

used when access to trusted data or image labels is not available,

but it is limited to defending against patch-based attacks. Guo

et al. [157] employed explainable AI techniques to identify the

most important features in samples containing triggers. The

purpose was to reduce redundant features that could impact the

classification task and achieve trigger pruning. However, for a

model with n-class labels, they obtained n pruned trigger masks

and patterns. As a result, the authors proposed using mean abso-

lute deviation (MAD) anomaly detection to distinguish the true

triggers from this series of restored triggers. They then retrained

the model with the recovered trigger samples to achieve trojan

removal. However, this method is currently limited to triggers

with regular shapes, which imposes certain constraints on its

applicability. Li et al. [158] pointed out that applying spatial

transformations such as flipping or scaling to test samples can

significantly and effectively reduce the success rate of backdoor

attacks. However, this method is only applicable to static trig-

gers. Meanwhile, they also highlighted that applying transfor-

mations to training samples before training the model can en-

hance the robustness to trigger variations, which can be used to

evade certain defense detection techniques. Udeshi et al. [159]

proposed their defense method NEO in a black-box scenario.

Specifically, they targeted a more traditional form of attack,

where a small pixel block is used as a trigger. NEO uses the

dominant colors of the image to cover the trigger, thus defend-

ing against backdoor attacks. Although this method has some

limitations, it can still provide a certain level of defense and

does not require knowledge of the internal details of the model.

Wei et al. [146] used image inpainting algorithms to remove

the trigger after they identified the trigger pattern. The poisoned

images processed using this method showed better visual results

compared to [159]. Additionally, this approach can adapt to

triggers of different shapes. As existing backdoor attacks have
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Fig. 10. Taxonomy of backdoor defenses.

attempted to achieve poisoning with the smallest possible sam-

ple rate, more advanced defense methods are needed to detect

backdoors effectively. As a result, Hayase et al. [147] proposed

using covariance estimation to amplify the spectral features of

poisoned samples and then applied the quantum entropy score

for feature detection, further improving the trigger removal ef-

fectiveness. Sun et al. [160] proposed a method called Smooth-

Inv, which achieves the recovery of a backdoor trigger with

just a single image. This provides a reliable security guarantee

for existing classifiers. For text-based backdoor attacks, Azizi

et al. [161] introduced T-miner, the first systematic exploration

of defending against trojan attacks in the text domain. This

approach does not require access to the original dataset; it

only relies on training a generative model through synthesized

samples. Chen et al. [162] proposed a technique called back-

door keyword identification (BKI), which involves removing

samples containing certain keywords from the dataset and then

retraining the model with the purified dataset. The selection

of keywords is achieved by analyzing changes in the LSTM’s

internal neurons and scoring the impact of each word in the text.

They then choose several words with higher scores from each

training sample as the keywords. Since this method requires

retraining the model in the end, it may result in significant

time overhead. Fan et al. [135] simplified complex RNNs by

transforming them into easily understandable models. Then,

based on the abstract model, they generated explanation results

corresponding to each sentence input. Finally, they detected

whether the explanation results belonged to trigger patterns

based on one key intuition and mitigated backdoor attacks

by removing such patterns. Zhou et al. [163] proposed

DATAELIXIR, a novel purification method designed specifi-

cally to cleanse poisoned datasets. It utilizes diffusion models

to eliminate trigger features and restore benign features, effec-

tively transforming poisoned samples into benign ones.

2) Model-Level Defense: Rieger et al. [20] introduced a

novel model filtering technique called DeepSight to filter out

model updates with high attack impact. Specifically, they intro-

duced division differences (DDifs), normalized update energies

(NEUPs), and the threshold exceedings metric to establish a

dynamic filtering mechanism. This mechanism is capable of

inferring information about the model training data, effectively

identifying and filtering poisoned models. Li et al. [26] pre-

sented a method called neural attention distillation (NAD),

which utilizes a teacher network to guide a student network with
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a backdoor to fine-tune on a small portion of a clean dataset,

aligning the attention of the student network’s intermediate

layers with the teacher network’s attention. This effectively

eliminates backdoor triggers in deep neural networks. Pang

et al. [164] were the first to propose using unlabeled data

for defending against backdoors. Specifically, they employed

knowledge distillation models for defense. By predicting clean

samples, benign knowledge is distilled from the teacher model,

enabling the student model to learn the normal behavior of the

teacher model, thereby removing backdoors. Furthermore, to

optimize the backdoor removal effectiveness, they introduced

an adaptive layer-wise initialization strategy to initialize the

student model. Liu et al. [165] proposed a defense method

that combines pruning and fine-tuning. In essence, pruning is

employed to remove the backdoor neurons, while fine-tuning

is used to restore (or at least partially recover) the decrease in

classification accuracy on clean inputs introduced by pruning.

However, this approach necessitates a subset of clean training

data, and the computational cost of the fine-tuning component

remains substantial. Additionally, this solution could lead to a

reduction in the predictive accuracy of clean samples. Dong

et al. [166] conducted defense in a more realistic black-box

setting, where defenders can only access a pretrained model and

use it as an oracle to obtain predictions. Drawing inspiration

from natural evolution strategies (NES), they proposed using

estimated gradients of parameters to learn a search distribution,

aiming to optimize the loss values. Qiu et al. [167] designed

the first framework, DeepSweep, for systematically evaluat-

ing DNN backdoor attacks. This framework comprises two

essential databases: an attack database containing known attack

instances and an augmentation database containing common

image transformation functions. Both of these databases are ex-

tensible, meaning that the framework can continually improve

as new attack methods are developed. They then fine-tuned

the model’s decision boundary and perturbed trigger patterns

during the inference stage to defend against backdoor attacks.

While this method is tailored for image classification backdoor

attacks, it also offers insights for other domains, such as NLP.

Wu et al. [168] introduced two algorithms based on neuron

input and weights. This method does not require access to the

client’s raw data, thereby achieving defense against backdoor

attacks on the client-side while preserving client data privacy.

However, in practical applications, it might incur significant

time overhead. Sun et al. [169] reduced the model update norm

and added Gaussian noise to alleviate model-replacement-based

backdoor attacks, but they did not provide certified robustness

guarantees. Cao et al. [170] introduced Integrated FL, the first

provably secure FL approach against malicious clients. How-

ever, this method requires training hundreds of FL models,

which falls short in defending against malicious clients ca-

pable of manipulating local training data and model updates.

Kaviani et al. [171] combined the scale-free structure and

Link-pruning to develop the LSPF algorithm, aimed at elimi-

nating connections between input layer neurons and neurons in

other layers. Furthermore, this method is characterized by its

simplicity in computation and ease of use. Zheng et al. [172]

introduced the first effective data-free defense method against

backdoor attacks. They identified a relationship between the

Lipschitz constant and backdoor behavior: channels are sensi-

tive to anomalous perturbations, and this constant is often used

to measure such sensitivity. Consequently, channels associated

with backdoors exhibit higher Lipschitz constants. Therefore,

these channels can be pruned to defend against backdoor at-

tacks. Additionally, since this method does not require data,

it can be extended to different CNN architectures. Xu et al.

[173] trained a meta-classifier to determine whether a model has

been implanted with a trojan. Specifically, they approached two

challenges. First, they used Jumbo learning to address the issue

of providing a training set for classifiers in a black-box mode.

Second, building upon the previous approach, they improved

detection quality by fine-tuning queries. This method exhibits

strong generalization capabilities, but it requires imitating other

known trojan attacks to enhance accuracy, incurring significant

computational costs. Weber et al. [174] proposed a unified

smoothing framework to prove robustness against various at-

tacks, but this method comes with substantial runtime costs.

Wang et al. [136] applied specific optimization bounds to each

neuron to suppress any potential large activations caused by

backdoor attacks, without significantly reducing the classifier’s

accuracy on clean samples. Zhu et al. [175] proposed ADFL, a

novel FL backdoor defense scheme based on adversarial distil-

lation. ADFL generates fake samples containing backdoor fea-

tures by deploying a generative adversarial network (GAN) on

the server side and relabeling fake samples to obtain a distilled

dataset. Then, using the labeled samples as input, knowledge

distillation is performed with the clean model as the teacher and

the global model as the student, correcting the global model and

eliminating the influence of backdoor neurons. This effectively

defends against backdoor attacks while maintaining model per-

formance. Guo et al. [151] proposed the global adversarial peak

(GAP) metric, calculated through the extreme value analysis

of adversarial perturbations. The GAP score is ultimately used

in conjunction with the median absolute deviation (MAD) to

detect backdoors in neural networks. Li et al. [176] discov-

ered that neuron activation patterns show a unique distribution

shift in backdoored benign and poisoned data. They introduced

layer-wise activation correction (LAC) to align activation distri-

butions between quantized and full-precision models, reducing

backdoor neuron drift. They also proposed the poisoned dis-

tribution approximation (PDA) objective, using slight pertur-

bations to enhance activation differences and improve defense

capabilities. Yuan et al. [150] proposed SHINE, which retrains

the shielding agent to learn to take appropriate actions in a

poisoned state and maintain its original behavior in a clean

state, thereby eliminating the trigger’s impact on the backdoor

agent. Zhao et al. [177] proposed a model unlearning-based ap-

proach, unlearning-based model ablation (UMA), which filters

out nonbackdoor features by eliminating inherent features of

the target class from the model and then reveals the backdoor

through dynamic trigger optimization. Qin et al. [178] proposed

a novel anti-backdoor FL framework called Snowball. It selects

model updates through bidirectional elections from an indi-

vidual perspective. The framework introduces a new paradigm

for detecting infected models using variational autoencoders
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(VAE), which gradually expands the selection scope, focus-

ing on model differences rather than benign patterns them-

selves to better distinguish between infected and benign model

updates.

3) Input-Level Defense: Doan et al. [179] introduced a plug-

and-play backdoor defense system called Februus. In essence,

this system targets poisoned samples given to the model, re-

moves the trigger, and then repairs the image. This is the first

method that defends against backdoors at runtime, enabling the

cleaning of trojan inputs without the need to retrain the model

or label data. Although Cho et al. [180] is a defense method

designed to counter adversarial attacks in semantic segmenta-

tion tasks, it has also been used for backdoor defense testing

by the authors in [117], so we include it here. In essence, they

constructed a denoising autoencoder comprising an encoder and

a decoder. The encoder extracts features, while the decoder

reconstructs the image based on these features. By preprocess-

ing data using this autoencoder, harmful content is removed

from the samples, achieving the defense objective. A similar

method is found in [181]. In [181], if the classification result

remains unchanged after the sample is processed by a detrigger

autoencoder, the model is considered clean; otherwise, it is

deemed to have a backdoor.

B. Backdoor Defense Methods Based on Model Lifecycle

1) Training-Time Defense: Tran et al. [25] discovered spec-

tral features as novel characteristics of all known backdoor

attacks and proposed a method for detecting backdoor attacks

by identifying spectral features. This method requires access

to the training dataset of the DNN model, which is not a re-

alistic assumption as defenders might not always have access

to the training dataset. Chen et al. [182] first introduced a

method called “Activation Clustering,” which does not require

any trusted data to detect poisoned samples. This technique

is applicable to both text and image datasets. However, at the

initial stage, this method requires training the model with an

untrusted dataset, meaning that a complete and trustworthy

dataset for training is not available, making it impractical. Zhai

et al. [183] introduced the noise-augmented contrastive learning

(NCL) framework. Specifically, it utilizes noise augmentation

to generate a new dataset and then retrains the model using the

NCL loss function to weaken the association between triggers

and target labels. This is the first text defense framework that

achieves model cleansing rather than trigger detection. Huang

et al. [184] decoupled the model training process by dividing the

DNN into two parts: a feature extractor and a simple classifier.

They first trained the complete DNN model using an unlabeled

dataset. Then, they kept the feature extractor unchanged and

trained the remaining fully connected layers using a labeled

dataset. Next, they used a label-noise algorithm to assess the

credibility of samples. High-credible samples were considered

as labeled samples (i.e., most likely clean samples), while low-

credible samples (i.e., most likely backdoor samples) were dis-

carded. Finally, the model was fine-tuned using semisupervised

learning. Wang et al. [185] introduced nonlinearity (NONE)

to identify linear decision regions. The authors observed that

trojans in DNNs were always paired with hyperplanes as their

trojan regions, and trojan-related neurons formed a hyperplane

as the classification surface for the input domain of all affected

labels. To address this, they proposed the NONE algorithm

to reset the affected neurons and remove the corresponding

data samples to enforce nonlinear decision regions, thereby

defending against trojan attacks during training. This is also the

first method to defend against natural trojans. Li et al. [186]

observed two specific differences between backdoor samples

and clean samples during model training: 1) backdoor tasks are

easier to learn, and the more powerful the backdoor attack is,

the easier it is for the model to learn it; 2) backdoor tasks are

correlated with the backdoor target class. Therefore, they pro-

posed the antibackdoor learning (ABL) method, which employs

a gradient ascent-based anti-backdoor mechanism to defend

against backdoor attacks during the model training phase. Li

et al. [187] proposed a novel defense method called reconstruc-

tive neuron pruning (RNP), which exposes and prunes backdoor

neurons through a process of unlearning and then recovery.

Specifically, RNP first forgets the neurons by maximizing the

model’s error on a small set of clean samples, and then recovers

the neurons by minimizing the model’s error on the same data.

Zhao et al. [188] assumed that the end-users only have a clean

dataset for fine-tuning, and they mitigate the backdoor impact

by pruning the head and further normalizing the weights of the

remaining attention heads. Chen et al. [189] proposed a novel

and effective defense method called progressive isolation of

poisoned data (PIPD). This method gradually isolates poisoned

data to improve isolation accuracy and reduce the risk of benign

samples being mistakenly classified as poisoned.

2) Inference-Time Defense: Wang et al. [22] proposed the

first defense method against DNN backdoor attacks, which can

detect and reverse engineer hidden triggers embedded inside

deep neural networks. However, this method cannot handle

models with multiple classes. Besides, it requires a clean train-

ing dataset. Therefore, Chen et al. [190] proposed an approach

that requires less prior knowledge of the model and does not

rely on the original clean dataset. Specifically, they first used

model inversion techniques to obtain a substitution training

set. Then, they used a conditional generator to construct trig-

gers and finally employed hypothesis testing-based anomaly

detection to detect backdoors. Additionally, the conditional

generator can also be used to patch the backdoored model.

Qiao et al. [191] found that modeling backdoor triggers poses

a high-dimensional unsampled generation modeling problem,

where the exact trigger generation process cannot be known.

Therefore, they proposed a max-entropy staircase approximator

(MESA) algorithm. This algorithm integrates a set of submod-

els to approximate the unknown trigger distribution. However,

this method requires retraining the model and can only defend

against nonstructured triggers with fixed shapes and sizes. Guo

et al. [34] transformed the trojan detection problem into an

optimization problem. Compared to [22], they proposed some

new methods. First, they designed new regularization terms

to address issues of oversized or scattered extracted triggers

and to constrain trigger smoothness. Second, they devised new

metrics to better eliminate false positives and incorrect triggers.
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Experimental results showed that [34] outperformed [22], but

due to the large number of hyperparameters in this method,

finding the optimal configuration could be challenging and

computationally expensive.

C. Other Types of Backdoor Defenses

1) Differential Privacy: Du et al. [192] demonstrated that

backdoor attacks can be seen as injecting poisoned samples

into the training dataset, with these poisoned samples being

treated as outliers. The authors showcased in their paper that

differential privacy can enhance the effectiveness of outlier de-

tection without explicitly defining the outliers, thereby making

it capable of detecting various anomalies. Consequently, they

extended the application of differential privacy to backdoor

defense and achieved favorable outcomes.

2) Certified Defense: Xie et al. [193] proposed the first gen-

eral framework, certifiably robust dederated Learning (CRFL),

for training FL models with certifiable robustness against back-

door attacks. In essence, CRFL employs clipping and smooth-

ing of model parameters to control model smoothness and

generates sample-level robustness certification to counter back-

door attacks. However, these methods did not take into ac-

count privacy issues in FL and incurred significant losses in

FL performance. Wang et al. [194] extended the application

of the proof of robustness using random smoothing techniques

for adversarial examples to the realm of backdoor defense.

This marks the first certified defense against backdoor attacks,

although the efficacy of existing random smoothing methods is

limited. Jia et al. [195] demonstrated that the inherent majority

voting mechanisms of k nearest neighbors (kNN) and radius

nearest neighbors (rNN) can provide certified defense against

backdoor attacks. They further indicated that jointly certifying

multiple test examples yields improved rNN certification ro-

bustness guarantees.

3) Causal Inference: Zhang et al. [196] innovatively ap-

proached the issue of backdoor defense from a causal inference

perspective. They constructed a causal graph and identified

false associations introduced by backdoor attacks between input

images and target labels, thereby misleading the model’s pre-

dictions. Building upon this, they introduced causality inspired

backdoor defense (CBD), a method to learn deconfounded

representations to defend against backdoor attacks. Liu et al.

[197] proposed a novel defense framework called front-door

adjustment for backdoor elimination (FABE), which is based

on causal inference and does not rely on assumptions about the

form of the trigger. By creating a “front-door” that maps the

actual causal relationships, which refers to the text retaining

the semantic equivalence of the initial input and is generated by

an additional, fine-tuned language model known as the defense

model, FABE effectively distinguishes between spurious and

legitimate associations.

VI. ARCHITECTURES, DATASETS, AND METRICS

In this section, we summarize the common model

architectures, datasets, and evaluation metrics in backdoor

research. We created a comprehensive table that includes

experimental data from some papers, as shown in

Table III, allowing readers to quickly reference relevant

information.

A. Architectures

Following the classification of deep learning model archi-

tectures in [198], we add the Transformer architecture and di-

vided deep learning model structures into four categories: DNN,

CNN, RNN, and Transformer. We provide a brief introduction

to each type of architecture, including some model variants, and

highlighted backdoor research based on them.

1) DNN: DNN plays a crucial role in the field of natu-

ral language processing and are widely used in tasks such as

toxic content detection [199], fake news detection [200], and

neural machine translation [201]. However, pretrained DNNs

have provided attackers with opportunities to implant malicious

backdoors. Currently, there is a substantial amount of back-

door research based on DNNs, such as composite attack [101],

T-miner [161], and TABOR [157].

2) CNN: CNNs are widely used in the field of image pro-

cessing, and there are a large number of backdoor works based

on them, such as Badnets [8], ULPs [13], and BaFFLe [128].

Among them, Badnets [8] is a pioneering work in backdoor

attacks, where the essence of the attack lies in establishing

a connection between triggers and target labels during CNN

training. CNNs include architectures such as VGG, ResNet, and

more.

VGG [202] was proposed by a research team at the University

of Oxford, and its full name is “Visual Geometry Group.” The

main characteristics of the VGG network are its depth and

simplicity. Many backdoor attack articles have used the VGG

model [55], [82], [98], [99].

ResNet (residual neural network) is a deep convolutional

neural network architecture proposed by researchers from Mi-

crosoft [203]. ResNet constructs an extremely deep network

by stacking multiple residual blocks, making training easier

and improving accuracy. With the widespread use of ResNet,

a considerable amount of research on backdoors based on this

architecture has begun to emerge [57], [100], [103], [191].

3) RNN: LSTM (long short-term memory) is a deep learning

model used for processing sequential data. It is widely used in

various domains such as natural language processing, speech

recognition, and time series prediction. For instance, Dai et al.

[116] proposed a black-box backdoor attack on a text classifica-

tion system based on LSTM. The dynamic placement of triggers

was introduced to enhance the evasion capability of the attack

to some extent. Additionally, [44], [124], [161], among others,

are also conducting backdoor research based on LSTM.

4) Transformer: Transformer is a model proposed by

Google in 2017 for machine translation [204]. It is essentially

an encoder–decoder architecture that can solve various tasks,

such as sentiment analysis, machine translation, text summa-

rization, and semantic relationship extraction. Many researchers

have studied backdoor based on it [12], [96], [99], [161],

[205].
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TABLE III
SUMMARY OF ARCHITECTURES, DATASETS, AND METRICS

Dataset Reference Architectures Metrics
Attack Perform. (%) Defence Perform. (%)

ASR ACC ASR ACC

MNIST

Kolouri et al. [13] CNN AUC 100 99.4 - -
Wang et al. [22] 2 Conv + 2 Dense ASR, ACC 99.9 98.54 - -

Nguyen el al. [123]
3 ConvBlocks, 2
fcs

ASR, ACC 99.86 99.52 - -

Xie et al. [37] 2 conv and 2 fc ASR, ACC 100 99.8 - -
Yao et al. [47] CNN ASR, ACC 96.6 97.3 - -

Nguyen et al. [100] 2 conv, 2 fc ASR, ACC 99.54 99.54 - -

Chen et al. [52]
2 conv, 2 pool
and 2 fc

ASR, ACC 99.85 98.2 - -

Chen et al. [190] CNN ASR, ACC - - 7.4 99.1
Wang et al. [185] ResNet18 ASR, ACC 99.98 99.61 0.37 99.57

Guo et al. [157] DNN
Fidelity, Correctness,
Patching Performance,
ASR, ACC

100 - 11.2 94.8

Du et al. [192] CNN
AUPR, AUROC, ASR,
ACC

98.1 99.11 0.39 97.34

Wei et al. [146] LeNet5 ASR, ACC 94.8 98.9 1 98

Zhu et al. [175] CNN
Relabeling accuracy,
ASR, ACC

100 90.39 3.25 88.56

CIFAR10

Yuan et al. [12] ViT ASR, ACC 100 94.17 - -
Kolour et al. [13] VGG AUC, ASR, ACC 99.9 79.5 - -

Li et al. [26] WideResNet ASR, ACC - - 4.77 81.17
Nguyen et al. [123] PreActRes18 ASR, ACC 99.55 94.15 - -
Nguyen et al. [100] PreActRes18 ASR, ACC 99.32 94.65 - -

Lin et al. [101] 4Conv+3FC ASR, ACC 80.8 82.4 - -

Zhang et al. [196]
WideResNet
(WRN-16-1)

ASR, ACC - - 1.6 87

Pang et al. [164] ResNet-18 ASR, ACC - - 3.74 91.59
Guo et al. [84] ResNet AUROC, ASR, ACC 97.7 92.31 - 93.9
Liu et al. [117] AlexNet ASR, ACC 99.9 63.50 ± 0.90 - -
Chen et al. [52] Resnet50 ASR, ACC 95.21 78.25 - -

Doan et al. [179] 6 Conv + 2 Dense ASR, ACC 100 90.79 0.25 90.08
Chen et al. [145] ResNet-18 ASR, ACC 97.29 92.46 0.31 92.42

Huang et al. [184] Resnet-18 ASR, ACC 100 94.92 0.96 92.41
Wang et al. [185] ResNet18 ASR, ACC 100 94.1 1.07 93.62
Qiu et al. [167] ResNet18 ASR, ACC 100 83 4.5 78.5
Li et al. [158] VGG-19 ASR, ACC 100 91.9 1.6 87.6
Li et al. [158] ResNet-34 ASR, ACC 100 94.1 1.5 91.4

Wang, et al. [136] ResNet-18 ASR, ACC 99.9 91.6 1.8 90.6
Zhu et al. [175] CNN Relabeling accuracy 93.96 72.54 2.31 71.69
Li et al. [187] ResNet-18 ASR, ACC 96.34 93.54 5.03 92.18

CIFAR100
Chen et al. [145] ResNet-18 ASR, ACC 99.77 74.43 0.07 73.36
Wang et al. [136] VGG-16 ASR, ACC 99.8 66.2 1.5 65

GTSRB

Wang et al. [22] 6 Conv + 2 Dense ASR, ACC 97.4 96.51 - -
Li et al. [26] WideResNet ASR, ACC - - 3.18 80.73

Liu et al. [57] ResNet34 SSIM, PSNR, MSE 91.67 86.3 - -
Nguyen et al. [123] PreActRes18 ASR, ACC 98.78 98.97 - -
Nguyen et al. [100] PreActRes18 ASR, ACC 99.84 99.27 - -

Lin et al. [101] 6Conv ASR, ACC 85.6 94 - -

Zhang et al. [196]
WideResNet
(WRN-16-1)

ASR, ACC - - 1.82 95.17

Pang et al. [164] ResNet-18 ASR, ACC - - 0.54 97.05
Yao et al. [47] 6 Conv + 2 FC ASR, ACC 100 85.6 - -

Zhang et al. [99] VGGNet F1-score, ASR, ACC 100 99.9 - -
Kolouri et al. [13] ResNet AUC, ASR, ACC 97.7 98.1 - -
Chen et al. [190] Faster-RCNN ASR, ACC - - 8.8 97.1
Doan et al. [179] 7 Conv + 2 Dense ASR, ACC 100 96.78 0 96.64
Wang et al. [185] ResNet18 ASR, ACC 99.84 96.67 0.76 96.39
Qiu et al. [167] LeNet-8 ASR, ACC 67 87.5 2 76.5

Guo et al. [157] DNN
Fidelity, Correctness,
Patching Performance,
ASR, ACC

99.9 - 1.5 94.6

Wang et al. [136] MobileNet ASR, ACC 100 94.5 1.5 95.4

(Continued)
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TABLE III
(Continued.) SUMMARY OF ARCHITECTURES, DATASETS, AND METRICS

Dataset Reference Architectures Metrics
Attack Perform.(%) Defence Perform. (%)

ASR ACC ASR ACC

ImageNet

Liu et al. [57] ResNet34
SSIM, PSNR, MSE, ASR,
ACC

82.11 90.32 - -

Zhang et al. [196] ResNet-34 ASR, ACC - - 0.91 87.9
Huang et al. [184] Resnet-18 ASR, ACC 90.49 80.23 0.26 80.99
Wang et al. [185] ResNet18 ASR, ACC 99.07 89.83 0.08 86.34

Guo et al. [157] DNN
Fidelity, Correctness,
Patching Performance,
ASR, ACC

99.9 - 5.8 91.1

Li et al. [187] ResNet-34 ASR, ACC 93.89 88.98 8.87 85.91

Tiny-ImageNet
Kolouri et al. [13] ResNet AUC, ASR, ACC 99.2 45.1 - -

Guo et al. [84] ResNet AUROC, ASR, ACC 97.22 40.11 - 90.90

CelebA
Nguyen et al. [123] ResNet18 ASR, ACC 99.33 78.99 - -

Zhu et al. [175] ResNet18
Relabeling accuracy,
ASR, ACC

92.37 71.42 3.97 71.06

YouTube Face
Lin et al. [101] 13Conv+3FC ASR, ACC 86.3 99.7 - -

Guo et al. [157] DNN
Fidelity, Correctness,
Patching Performance,
ASR, ACC

99.4 - 4.8 91.7

LFW Guo et al. [157] DNN
Fidelity, Correctness,
Patching Performance,
ASR, ACC

96 - 8.6 91.6

AG’s News

Lin et al. [101] 4LSTM+1FC ASR, ACC 89.2 88.5 - -
Azizi et al. [161] Bi-LSTM ASR, ACC 99.78 ± 0.58 90.65 ± 0.13 - -
Zhai et al. [183] BERT ASR, ACC 96.49 92.63 44.91 91.02
Fan et al. [135] LSTM ASR, ACC 99.99 90.88 - -
Fan et al. [135] GRU ASR, ACC 100 90.05 - -

VGG-Face
Yqo et al. [47]

VGG-Face (13
Conv + 3 FC)

ASR, ACC 100 91.8 - -

Doan et al. [179]
13 Conv + 3
Dense (VGG-16)

ASR, ACC 100 91.86 0 91.78

SST
Zhang et al. [99] BERT F1-score, ASR, ACC 100 93.2 - -

Yang et al. [64]
bert-base-
uncased

ASR, ACC 100 92.55 - -

Zhai et al. [183] BERT ASR, ACC 96.71 90.54 55.81 90.3

OLID Zhang et al. [99] BERT F1-score, ASR, ACC 99.9 80.7 - -

Enron
Zhang et al. [99] BERT F1-score, ASR, ACC 99.2 98.7 - -
Wei et al. [68] BERT-base-cased ASR, ACC 80.34 98.57 6.21 98.43

cats-VS-dogs Zhang et al. [99] VGGNet F1-score, ASR, ACC 100 96.1 - -

waste classification Zhang et al. [99] VGGNet F1-score, ASR, ACC 100 92.6 - -

IMDB

Yang et al. [64]
bert-base-
uncased

ASR, ACC 98.74 93.57 - -

Chen et al. [162]
Bi-directional
LSTM

ASR, ACC 98.9 86.32 13.23 87.03

Fan et al. [135] LSTM ASR, ACC 99.98 90.6 - -
Fan et al. [135] GRU ASR, ACC 100 89.79 - -

Amazon Yang et al. [64]
bert-base-
uncased

ASR, ACC 100 97 - -

Fashion-MNIST Liu et al. [117] AlexNet ASR, ACC 100 86.80 ± 1.30 - -

STL10 Liu et al. [117] AlexNet ASR, ACC 99.9 43.80 ± 1.00 - -

SVHN
Liu et al. [117] AlexNet ASR, ACC 97.00 ± 0.90 75.90 ± 1.00 - -
Chen et al. [52] Resnet50 ASR, ACC 97.72 93.81 - -

Yelp Azizi et al. [161] 3 LSTM ASR, ACC 99.52 ± 0.55 92.70 ± 0.26 - -

Hate Speech Azizi et al. [161]
LSTM-based
model

ASR, ACC 99.57 ± 0.11 94.86 ± 0.24 - -

Movie Review
Azizi et al. [161] 3 LSTM ASR, ACC 97.82 ± 0.13 83.39 ± 0.44 - -
Fan et al. [135] LSTM ASR, ACC 99.93 77.47 - -
Fan et al. [135] GRU ASR, ACC 99.66 76.63 - -

Fakeddit Azizi et al. [161]

Transformed-
based model
using 2-head
self-attention
layers

ASR, ACC 99.76 ± 0.03 83.07 ± 0.09 - -

BTSR Doan et al. [179] ResNet18 ASR, ACC 100 97.04 0.12 96.98

TrojAI Wang et al. [185] ResNet18 ASR, ACC 54.33 99.91 34.98 98.13

PubFig Qui et al. [167] VGG-16 ASR, ACC 100 95.5 1.5 87

TC
Fan et al. [135] LSTM ASR, ACC 99 92.32 - -
Fan et al. [135] GRU ASR, ACC 100 92.14 - -

ISIC-2019 Feng et al. [59] ResNet50 ASR, ACC 99.53 ± 0.08 85.43 ± 0.40 - -
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BERT, which stands for bidirectional encoder representation

from transformers, is a pretrained language representation

model proposed by Google in 2018 [206]. It is one of the most

popular NLP models and can achieve state-of-the-art perfor-

mance in various downstream tasks. Consequently, there is an

abundance of research on backdoors based on it, such as [11],

[63], [65], [207].

B. Datasets

In Table III, we summarize the datasets used in the referenced

papers in this article and classified them. The data in the table

is mainly divided into two categories: image data and text data.

Each dataset includes corresponding attack and/or defense per-

formance. The table can provide some references for selecting

datasets in future research. Next, we categorize the dataset into

image and text and provide a brief description of each dataset.

1) Image Dataset:

a) MNIST: The MNIST dataset consists of 10 handwritten

digits (0–9) presented in grayscale images, with each digit

represented by 6000 training images and 1000 testing

images. There are lots of works based on it [13], [22],

[37], [47], [123].

b) CIFAR10: The CIFAR-10 dataset includes 60 000 images

spread across ten distinct classes. For each class, the

training set contains 5000 images, and the test set has

1000 images. Each image in the dataset is 32 × 32 pixels

in size. Many backdoor research utilize it [12], [13], [26],

[123], [100].

c) CIFAR100: CIFAR-100 dataset contains 100 classes.

Each class has 600 color images of size 32 × 32, with

500 images used for training and 100 images for testing.

[145] and [136] used this dataset.

d) GTSRB: The GTSRB dataset contains 39 209 training

images and 12 630 testing images, divided into 43 classes.

Each image in the GTSRB dataset is 32 × 32 pixels in

size. The related works include [22], [26], [57], [123].

e) ImageNet: ImageNet is a dataset containing over 14 mil-

lion images, covering around 22 000 categories. Each

category has hundreds to thousands of images, and the

dataset is widely used for image classification and object

detection tasks. Many works have used it [57], [196],

[184].

f) Tiny-ImageNet: Tiny-ImageNet is a smaller subset of the

broader ImageNet dataset, consisting of 100 000 training

samples and 10 000 testing samples across 200 classes.

The images in Tiny-ImageNet are 64 × 64 pixels in size

[13], [84], among others, are conducting research based

on it.

g) CelebFaces attributes (Celeba): The CelebFaces At-

tributes Dataset, also known as CelebA, is a large-scale

dataset of facial attributes. It includes 10 177 identities

and 202 599 facial images. Each image is annotated with

5 landmark locations and 40 binary attributes. Research

efforts on this dataset include works like [123] and [175].

h) YouTube Face: The YouTube Faces Dataset is a

facial video database used for studying unconstrained

face recognition in videos. It contains 3425 video

clips from 1595 subjects, all sourced from YouTube.

Numerous studies have utilized the dataset [101], [157].

i) Labeled Faces in the Wild (LFW): The LFW dataset

contains 13 233 facial images, each labeled with the cor-

responding person’s name, covering 5749 individuals.

Most people are represented by only one image. Each

image is 250 × 250 pixels in size, with the majority being

color images. [157] utilizes this dataset.

j) VGG-Face: The VGG-face dataset is a collection of

celebrity images scraped from the web, containing im-

ages of 2622 celebrities. This dataset is designed to

have no overlap with popular face recognition benchmark

datasets. The dataset has been employed in a wide range

of research [47], [179].

k) Cats-VS-Dogs: The Cats versus Dogs dataset contains

25 000 images of cats and dogs, with an equal number

of images for each class (12 500 cats and 12 500 dogs).

The dataset is often used to train models to distinguish

between images of cats and dogs. The dataset is employed

in [99].

l) Waste classification: The waste classification dataset con-

tains 15 000 images (each 256 × 256 pixels) covering

30 different categories of various recyclable materials,

general waste, and household items. Each category has

500 images, with 250 images per subcategory. [99] makes

use of the dataset.

m) Fashion-MNIST: The Fashion-MNIST dataset includes

70 000 front images of various items from 10 differ-

ent categories. The size, format, and training/test split

of Fashion-MNIST are identical to the original MNIST

dataset, with a 60 000/10 000 split for training and testing

data, and 28 x 28 grayscale images. [117] leverages the

dataset.

n) STL10: The STL-10 dataset, derived from ImageNet,

contains 10 categories with 500 labeled training sam-

ples per category and an additional 100 000 unla-

beled samples. Each category has 800 96 x 96 pixel

RGB images in the test set. The dataset is incorporated

into [117].

o) SVHN: The SVHN dataset contains 10 categories, where

digits 1–9 correspond to labels 1–9, and the digit “0” is

labeled as 10. The training set includes 73 257 images,

and the test set contains 26 032 images. Many researchers

have made use of the dataset [52], [117].

p) Belgium traffic sign recognition (BTSR): The Belgium

traffic sign recognition (BTSR) dataset is a widely used,

high-resolution traffic sign dataset featuring images of

size 224 × 224. Unlike other datasets, BTSR offers a

more limited number of training samples. [179] relies on

the dataset.

q) TrojAI: TrojAI contains the images created by composit-

ing a synthetic traffic sign, with a random background

image from the KITTI dataset [208].

r) PubFig: The PubFig dataset contains 11 070 training

images and 2768 testing images of 83 celebrities. [167]

is based on the dataset.
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s) ISIC-2019: The ISIC-2019 dataset includes 25 331

dermoscopic images categorized into eight diagnostic

groups: melanoma, melanocytic nevus, basal cell

carcinoma, actinic keratosis, benign keratosis,

dermatofibroma, vascular lesion, and squamous cell

carcinoma. [59] is conducted using the dataset.

2) Text Dataset:

a) AG’s news: The AG’s News dataset is created by select-

ing the four largest categories from the original corpus:

World, Sports, Business, and Sci/Tech. The dataset has

seen extensive use in various studies [101], [161], [183].

b) SST: SST stands for Stanford Sentiment Treebank, and

the data mainly comes from movie reviews. The dataset

is divided into train/dev/test sets, containing 67 359 873,

and 1822 samples, respectively. A significant number of

works have applied the dataset [64], [99], [183].

c) OLID: OLID is a hierarchical dataset used for identifying

the type and target of offensive language in social me-

dia. The dataset was collected on Twitter and is publicly

available. It contains a total of 14 100 tweets, with 13 240

in the training set and 860 in the test set. Each tweet

is labeled at three levels:1) offensive/nonoffensive; 2)

targeted insult/untargeted; and 3) individual/group/other.

[99] relies on the dataset.

d) Enron: The Enron Email Dataset includes 5 million email

messages from 150 employees, consisting of executives

and mid-level managers at the Enron Corporation. Several

studies have leveraged the dataset [68], [99].

e) IMDB: The IMDB dataset consists of 50 000 movie re-

views gathered from online sources, with an equal split

of 25 000 positive and 25 000 negative reviews. Each

review averages around 220 words. The dataset has been

frequently used in academic research [64], [135], [162].

f) Amazon: The Amazon Product Reviews dataset, collected

in 2023, is a large-scale dataset featuring 48.19 million

products and 571.54 million reviews from 54.51 million

users. The analysis in [64] is performed using the dataset.

g) Yelp: The Yelp dataset includes 4.7 million user reviews,

over 150 000 business listings, 200 000 images, and data

from 12 major metropolitan areas. It also covers 1 million

tips from 1.1 million users and more than 1.2 million busi-

ness attributes. [161] incorporates data from the dataset.

h) Hate speech: The hate speech dataset merges two tweet

datasets from previous studies [209], [210], each with

a different labeling scheme. The first dataset catego-

rizes tweets into two classes: offensive and nonof-

fensive, while the second categorizes them into three

classes: sexist, racist, and neither. [161] makes use of the

dataset.

i) Movie review: Rotten tomatoes movie reviews (MR) is a

dataset of movie reviews that includes 5331 positive and

5331 negative sentences, with an average sentence length

of 19 words. Many works have incorporated the dataset

into their analysis [135], [161].

j) Fakeddit: Fakeddit is a novel multimodal dataset de-

signed for fake news detection, consisting of over 1 mil-

lion samples of fake news across multiple categories.

After several stages of review and processing, the samples

are labeled using distant supervision into two-way, three-

way, and six-way classification categories. [161] utilizes

this dataset.

k) Toxic comment (TC): The toxic comment classification

(TC) dataset was created for a competition and includes

a large collection of Wikipedia comments that have been

manually labeled for toxic behavior. [135] relies on the

dataset.

C. Metrics

Here, we describe some of the used evaluation metrics in

backdoor attacks and defenses.

1) Attack success rate (ASR): This metric is used to evaluate

the proportion of successful attacks in all of the attacker’s

trials. Specifically, it measures the rate at which samples

containing triggers are misclassified as the targeted type

by the backdoor model. Let T denote attack trials, Ts de-

note the number of successful attacks, and Tf denote the

number of failed attacks, then, ASR can be represented

using (6) as follows:

ASR =
Ts

Ts + Tf

(6)

2) Main task accuracy (ACC): ACC represents the model’s

performance on clean samples.

3) Area under the curve (AUC): AUC is the area under

the ROC curve (receiver operating characteristic curve)

formed with the coordinate axes. The value of AUC

ranges between 0.5 and 1. The closer the AUC is to 1.0,

the higher the accuracy of the detection method; when it

equals 0.5, the accuracy is the lowest and of no practical

use.

4) Fidelity [157]: Similar to the F1-score, it is also used

to quantify the fidelity of backdoor recovery. Given a

restored trigger, theF1 score is defined as following:F1 =
2 · (precision · recall/precision + recall), precision =
(‖M⊙Mt‖1/‖M‖1), recall = (‖M⊙Mt‖1/‖Mt‖1).
Here, M and Mt represent the mask of the trigger re-

stored and that of the ground-truth trigger.

5) Correctness [157]: Correctness includes four different

detection outcomes: successful detection, successful de-

tection with errors, incorrect trojan detection, and failed

detection.

6) Patching performance [157]: Patching performance is

assessed using classification accuracy and attack success

rate on the patched model. Classification accuracy mea-

sures the ratio of contaminated testing samples that are

correctly classified into their original classes, while attack

success rate measures the ratio of contaminated testing

samples that are misclassified into the target classes.

7) Area under the precision-recall curve (AUPR): AUPR

is the area under the Precision-Recall curve and typically

better reflects the model’s performance when the dataset

is imbalanced.

8) Relabeling accuracy [175]: Relabeling accuracy

represents the ratio of the number of generated samples
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correctly classified by the clean model to the total

number of generated samples.

9) Structural similarity (SSIM): SSIM is a metric for mea-

suring the similarity between two images. The SSIM

algorithm is mainly used to detect the similarity of two

images of the same size or to assess the degree of image

distortion. It is commonly used to detect the similarity be-

tween backdoor samples and normal samples to achieve

covert trigger implantation.

10) Peak signal to noise ratio (PSNR): PSNR is a commonly

used full-reference image quality assessment metric. The

basic definition of PSNR is based on mean square error

(MSE), which measures the difference between the origi-

nal image and the noisy image. Specifically, the larger the

PSNR, the smaller the distortion and the better the image

quality.

11) Mean squared error (MSE): MSE loss, also known as

quadratic loss or L2 loss, is commonly used in regression

tasks. The MSE function measures the performance of a

model by calculating the square of the distance (i.e., error)

between the predicted values and the actual values. That

is, the closer the predicted values are to the true values,

the smaller the mean squared error.

12) F1-score: F1 Score is a metric used in statistics to mea-

sure the accuracy of a binary classification model. The

F1 Score can be seen as the harmonic mean of precision

and recall, and is often used to assess the accuracy of

an algorithm. Its maximum value is 1, and its minimum

value is 0.

VII. FUTURE RESEARCH DIRECTION

As mentioned above, backdoors have been extensively stud-

ied in multiple fields from various perspectives. However, there

are still some research problems that need to be addressed in

certain areas. Therefore, in this section, we propose several

potential research directions, hoping to provide some guidance

for future backdoor research.

1) Innovative triggers design exploration: Trigger forms

vary widely, including but not limited to static and dy-

namic triggers, visible and invisible triggers, pixel and

text triggers, and more. Different tasks and scenarios re-

quire different triggers, making the design of sufficiently

covert and effective triggers a crucial research point in

backdoor research.

2) Backdoor mechanisms exploration: Traditional backdoor

implantation typically involves the joint participation of

datasets and models. Recent research has introduced

training-free backdoor attacks [93] and data-free back-

door attacks [96]. In [93], backdoors are implanted by di-

rectly modifying model components, while [96] implants

backdoors by generating substitutable datasets. Both of

these methods break away from the inherent patterns

of backdoor attacks and achieve high ASR. Therefore,

further investigating the mechanisms of backdoor attacks

to propose more advanced attack methods is a promising

research direction.

3) The positive utilization: Technology is a double-edged

sword. Although backdoor attacks have been shown to

be harmful, researchers have taken advantage of their

stealthiness to use backdoor attacks in data protection

scenarios, including copyright protection [211], [212],

[213]. For instance, in [211], the authors watermark

datasets using poison-only backdoor attacks, and then

they confirm dataset ownership using a hypothesis test-

ing technique. This approach allows ownership verifica-

tion with only model API access. Thus, future research

may examine more beneficial applications of backdoor

methods.

4) Expanding research areas and application scenarios:

We visualized the indexed keywords related to backdoor

attacks from 2018 to 14 July, 2024 in the Scopus database

using the VOSviewer tool, as shown in Fig. 11. In the

image, each node represents an index keyword. The size

of the node indicates the frequency or importance of the

keyword in the research field. The entire graph centers on

“backdoor” and uses different colors to represent different

clusters. Specifically, the green cluster is mainly related

to “backdoor attack” and “deep neural networks,” the red

cluster to “network security” and “malware,” the yellow

cluster to machine learning security, the blue cluster to

NLP and “neural networks,” and the purple cluster to

more specialized topics such as “backdoor sets” and “al-

gorithms.” Additionally, the thickness of the connections

between nodes reflects the strength of their relationships.

Finally, the peripheral nodes, although on the edge, still

hold significant research value in the field, such as “face

recognition,” “privacy-preserving techniques,” and “hard-

ware.” This visualization offers a detailed overview of the

interconnections between various research topics, empha-

sizing the interdisciplinary nature of the field and pin-

pointing key areas of interest and study. However, there

is limited research in areas such as speaker recognition

[17], [114], [115], video recognition [112], [113], [124],

3-D point clouds [111], [118], and large language models

[109], [110]. In addition, Fig. 12 illustrates the publi-

cation trends of relevant papers on backdoor research

over the past five years. The data in Fig. 12 also comes

from the Scopus database. We only counted the number

of articles in the field of Computer Science that have

“backdoor” in the title, abstract, or keywords, with data

up to 14 July, 2024. As shown in the figure, the number

of published articles on backdoors has been increasing

year by year, indicating that this field continues to hold

significant research value. Through the analysis above,

we aim to showcase the trends in backdoor research and

use it as a basis to further enrich and deepen research on

various aspects of backdoors.

5) Interpretability of backdoor attacks: The interpretability

of backdoor attacks remains an unresolved issue. Some

studies have attempted to elucidate the interpretability of

backdoor attacks [91], [157], [214], [215], [216]. Specif-

ically, Li et al. [216] found that the success of backdoor

poisoning attacks depends on three key components: the
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Fig. 11. Research index keyword network.

Fig. 12. Published articles statistics.

number of feature vectors in the dataset, the trigger pat-

tern and the norm ratio of the feature vectors, and the

percentage of poisoned data in the training set. Increasing

research into the interpretability of backdoors is crucial

for developing more advanced attacks and more effective

defenses.

6) Persistence of backdoor attacks: Dai et al. [108] found

that the backdoors implanted by current attacks are

not persistent and disappear quickly once the attacker

stops poisoning the model. Therefore, they proposed a

novel attack, Chameleon, which leverages contrastive

learning to further amplify the attack effect and create

more persistent backdoors. Additionally, [104], [105],

[106], [107] conducted relevant research on the persis-

tence of backdoor attacks. Exploring the reasons for ex-

tending the attack’s effect will help better understand

the backdoor mechanisms and design more covert and

persistent attack methods. At the same time, this provides

an important theoretical foundation and practical guid-

ance for developing more advanced and effective defense

strategies.

VIII. CONCLUSION

Although deep learning systems are extensively used in com-

puter vision, natural language processing, and speech recog-

nition settings, it has been discovered that these systems are

susceptible to backdoor attacks. Sorting out the present status

of attack and defense is therefore essential. In this article, we

systematically discuss deep learning backdoor attacks and de-

fenses. Specifically, we summarized and categorized backdoor

attacks with deep learning approaches, applications, attacker’s

knowledge and other criteria. Furthermore, we classified back-

door detection methods based on timing of detection and de-

tection object. In addition, we categorized backdoor defenses

according to multiple levels, the lifecycle of the model, and

other relevant factors. Next, we conclude by discussing a few

more exciting potential research directions. According to the

investigated literature, the capabilities of backdoor attacks and

defenses are dynamically intertwined and evolving. As a result,

backdoor attacks and defenses continue to be hot topics of

discussion. We anticipate that our work will be a useful resource
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for scholars studying this topic and that it will spark additional

conversations about the development of deep learning backdoor

attacks and defenses.
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