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Data-free black-box attacks aim to attack a model with- A Rt ‘X/O o
out access to either the model parameters or training data. 4—"32 | 20
Existing methods use a generator to synthesize training "
samples and then train a substitute model to imitate the 2 A Nl
victim model. The adversarial examples (AEs) are finally N a? 42N\ a
generated using the substitute model to transfer to the vic- Substitute Model™~ Network I{M:v;d Networkl WV~
tim model. To this end, how to generate diverse train- @) (b) (©
ing samples for substitute model training and improve the
transferability of AEs from the substitute model to vic- Figure 1. Comparison of different generator-based data-free

black-box attacks. (a) A substitute model is trained to imitate the
victim model, however, the reasoning gap between the substitute
model and the victim model can be large due to the distribution
shift in the synthesized samples; (b) Recent methods extend dual
networks as the substitute model to minimize the gap, but the sam-
ple space are not fully explored which leads to under-optimal re-

tim model become the core challenges. In this paper,
we propose a Knowledge-Orthogonalized Ensemble Attack,
dubbed KOEnsAttack, to accomplish these two goals. We
first use dual networks as the ensemble substitute model,
and then propose a sample hardness enhancement to trans-

form the samples from the generator into hard samples that sults; (c) We propose the knowledge-orthogonalized ensembles to
exist in the controversial regions of the dual models for pro- reinforce the generalization of the substitute model which can ef-
moting the sample diversity. Next, during the substitute fectively improve the attack performance.

model training, we design a knowledge orthogonalization

module to guide the dual networks in learning complemen- strategically crafted perturbations—often imperceptible to
tary and useful information from the victim model, thereby human observers—can systematically deceive model pre-
enhancing the transferability of adversarial samples gener- dictions. This fundamental vulnerability raises critical con-
ated on the final ensemble model. Extensive experiments on cerns regarding the operational security of DNN-based sys-
several datasets are conducted to evaluate the effectiveness tems in real-world deployments. Consequently, the ma-
of our method. The results show that the proposed method chine learning community has intensified efforts to ad-
can achieve superior performance compared with the state- dress this dichotomy through two complementary research
of-the-art competitors. thrusts, namely adversarial attack and defense, for better

improving the robustness of networks.

Typically, adversarial attacks can be categorized as
1. Introduction white-box attacks [1, 18, 19, 28] and black-box attacks
[2, 15, 32] according to the level of access to the victim
model. Existing attacks can achieve near-optimal attack
performance under the white-box settings via reversing the
gradients as the perturbations; however, they would lead
to trivial solutions under the black-box settings where only
the input-output feedback of the victim model can be ac-
cessed. Modern black-box attacks typically leverage the

Deep Neural Networks (DNNs) have emerged as the dom-
inant framework across various applications [4, 41] owing
to their demonstrated capacity for learning hierarchical rep-
resentations from complex data structures. However, recent
studies [16, 28, 33-35] have exposed an inherent suscep-
tibility of DNNs to adversarial examples (AEs), wherein

*Corresponding authors. transferability of adversarial perturbations, crafting AEs on
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a pre-trained substitute model through specific operations
to threaten the target model. However, in more realistic set-
tings, the training data can also be unavailable, which limits
the training of substitute models, making the adversarial at-
tack still a struggle.

To address the “data-free” issue, a number of works [23,
25, 27, 30, 40] additionally utilize a well-designed genera-
tor to synthesize training samples for training the substitute
model. However, due to the distribution shift in the syn-
thesized training samples, the reasoning gap between the
substitute model and target model can be large and further
hinders the transferability of AEs, as shown in Figure | (a).
To minimize the gap, recent studies [23] propose the ensem-
ble substitute model that is composed of dual networks, and
then a disagreement loss is employed on the generator to
produce hard samples that can maximize the disagreement
between these two networks. These hard samples provide
the driving force to make the decision boundary of at least
one of the dual networks to align with the victim model
in each training epoch since they are misclassified by at
least one network in the ensemble, as shown in Figure | (b).
While remarkable progress can be achieved, we notice that
there still exist several limitations: First, the hard samples
in the controversial regions of the input space can play a
critical role in substitute model training because they can
not only help minimize the reasoning gap but also reduce
the query times since they are more effective than the easy
data. However, the loss optimization in the existing meth-
ods cannot fully explore the input space, especially when
combined with other objectives. Second, for the substitute
model training, existing methods only use the discrimina-
tion loss to imitate the victim model, neglecting the gener-
alization of the substitute model which potentially impedes
the transferability of the generated AEs.

In this paper, we design the Knowledge-Orthogonalized
Ensemble Attack, dubbed KOEnsAttack, for efficient data-
free black-box adversarial attacks. Specifically, we follow
the previous data-free adversarial attack pipeline where a
generator is employed to generate training samples and a
substitute model is trained on these samples with the query
feedback of the victim model. The AEs are finally gener-
ated by white-box attacks on the trained substitute model.
Instead of employing disagreement loss on the generator,
we propose to obtain the hard samples in a more direct and
effective way: iteratively adding the reversed gradients of
the discrepancy loss between two sub-networks to the orig-
inal samples, so that the generated samples can be differ-
ently classified in the dual networks. By such transforma-
tion, the samples are all hard samples for substitute model
training, which can effectively push the similarity to the
victim model and reduce the query times during training.
Meanwhile, we further design a knowledge orthogonaliza-
tion module to force the dual networks to learn complemen-
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tary knowledge from the same black-box model, reinforcing
the generalization of the substitute model and finally im-
proving the transferability of the generated AEs, as shown
in Figure | (c). Our proposed method demonstrates 98.12%
untargeted attack success rate on CIFAR-100 dataset within
only 4M query times, surpassing the SOTA method Dis-
GUIDE [23] by 1.02% and a 6M query reduction.

The main contributions of our work can be summarized
as follows:
We propose KOEnsAttack, a query-efficient black-box at-
tack method that employs an ensemble substitute model
trained on hard samples that exist in the controversial re-
gions of the sub-networks in the ensemble.
We introduce the sample hardness enhancement (SHE)
for transforming the generated samples into hard samples
that are beneficial for substitute model training and effec-
tively reduce the black-box query budget.
We further design the knowledge orthogonalization mod-
ule (KOM) to improve the generalization of the ensemble
substitute model, which consequently promotes the trans-
ferability of the generated AEs.
Our empirical evaluations on various datasets under both
untargeted and targeted attacks demonstrate that the pro-
posed KOEnsAttack can achieve SOTA attack perfor-
mance with a large margin and significantly reduce the
query budgets during the substitute training process.

2. Related Work

Adversarial Attacks. Since Szegedy et al. [28] first illus-
trated the vulnerability of DNNs to adversarial examples,
extensive studies [6, 9, 17, 18, 22, 36, 39] have been con-
ducted to focus on adversarial attacks for misleading the
well-trained DNN models. In general, these methods can
be divided into white-box and black-box attacks according
to whether the attackers have access to the parameters or ar-
chitectures of the target model. By leveraging the reversed
gradients, white-box attacks can achieve high attack suc-
cess rates; however, the attack performance would degrade
severely under the black-box settings since attackers only
access the simple output of the victim model. A line of
methods [3, 8, 31] utilizes inputs query feedback to guide
the generation of adversarial perturbations, while another
line [2, 5, 11, 20] aims to improve the transferability of ad-
versarial examples crafted from a substitute model to un-
known models. Despite the achievements, in the more real-
istic scenarios, attackers can access neither the training data
nor the target model, i.e., data-free black-box setting, bring-
ing extra challenges in substitute model training.

Data-Free Black-Box Attacks. Exposed to the challenge
of data-free and black-box settings, recent works [23, 27,
30] proposed to employ a generator to generate train-
ing samples and then use these samples to train a substi-
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Figure 2. Illustration of our KOEnsAttack pipeline. A generator fed with random noise is first trained to produce synthetic data, followed
by the sample hardness enhancement (SHE) strategy to transform the samples into hard samples. Next, the ensemble substitute model is
trained via a knowledge orthogonalization module (KOM) to encourage the learning of valuable and complementary information from the

victim model.

tute model for generating transferable adversarial exam-
ples. DaST [40] is the first work to utilize a generator
with noise as input to synthesize data for querying the tar-
get model and training the substitute model. DFME [30]
and MAZE [12] further estimated the gradients of the vic-
tim model using black-box gradient estimators to force the
similarity between the substitute model and target model.
To improve the synthesized data quality, Sanyal et al. [25]
employed a generative adversarial network (GAN) frame-
work by introducing additional datasets as the proxy data to
improve the data quality. Rethinking the convergence fail-
ure and model collapse of previous methods between gen-
erator and substitute model, IDEAL [38] designed a pow-
erful black-box attack framework that two players are no
longer forced to directly compete in min-max game. Be-
sides, DisGUIDE [23] proposed to maximize the disagree-
ment loss between two surrogate models to force the gen-
erator to produce more query-valuable synthetic samples.
More recently, STDatav2 [27] introduces the joint-data op-
timization that leverages both synthesized and proxy data
and develops a self-conditional data synthesis framework
for improving data diversity. While remarkable progress
has been achieved, the loss-based optimization in sample
synthesis of these existing methods cannot fully explore the
sample space for substitute model training and the general-
ization ability of the substitute model should also be con-
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sidered for transferability improvement.

3. Method

3.1. Overview

Our goal is to attack a model in a data-free and black-box
scenario. Given a black-box victim model V without any
knowledge (i.e., model structure, parameters, and training
data), we first introduce a generator G to synthesize training
samples X. And then a transparent white-box substitute
model S is trained on X to imitate V for generating AEs
that can be transferred to attack V. Note that we follow
the most realistic scenario that only the label output of V is
accessible, i.e., hard label setting.

We present KOEnsAttack, a generator-based framework
with an ensemble substitute model, to generate transferable
AEs for the victim model. Our KOEnsAttack boosts the
effective and efficient training of the substitute model by
transforming the generated samples into hard samples as
well as introducing knowledge orthogonalization into the
ensemble for improving the generalization. An overview
of our approach is shown in Fig. 2. It mainly consists of
two phases: (1) Hard Sample Generation and (2) Substi-
tute Model Training. The generator G is first trained to
synthesize the training samples that are used for the sub-
stitute model training. We utilize the sample hardness en-



hancement to transform the output samples into hard sam-
ples. Then in phase 2, the substitute model S is trained on
the hard samples with the query feedback from the victim
model. Note that S is an ensemble of dual networks, de-
noted as S1 and Sa, where the final ensemble output is an
average soft-vote of the dual networks.

3.2. Hard Sample Generation

In the first phase, the generator G takes noise Z as input
and output samples X. To be formal, given the noise Z
from Gaussian prior, Z ~ N(0, 1), the generator G is uti-
lized to map Z to the synthetic samples X for querying vic-
tim model V. The synthetic samples X are expected to be
evenly distributed in the sample space and exist in the con-
troversial regions of the dual networks. Thus we first em-
ploy a class diversity loss to train the generator G, instead of
combining with a disagreement loss, we propose to directly
transform the generated samples into hard samples using the
sample hardness enhancement module.

Class Diversity Loss. We employ the class diversity loss to
balance the generated data distribution and promote the data
diversity. Specifically, we use information entropy to mea-
sure the confusion degree of the synthetic data, ensuring the
diversity of the generated sample categories. Given a batch
with batch size B of synthetic samples X = {z;}2, =
G(Z), we first compute the corresponding prediction of the
substitute model as:

Pens(xz) = )) + Softmax(SZ(xl)))

6]

and then the generator G is optimized as the following loss:

1 B K
= E ZZ ens xl IOg ens(xi))v )
where P,

k (x;) is the k-th element of P.,,(z;), i.e., the
ensemble prediction score of the k-th class.

;(softmax(Sl(

Sample Hardness Enhancement. Next, after updating G
using Lg, we can obtain the samples X = G(Z). We pro-
pose to further move these samples to the controversial re-
gions of the dual networks in the substitute model. Inspired
by the gradient-based attack which has high success in mak-
ing samples cross the decision boundary, we propose to iter-
atively reverse the gradient of the discrepancy loss between
the dual networks on the samples. Specifically, the discrep-
ancy loss between the dual networks can be first computed
using the cosine similarity as:

Lais = 0s(S1(z;), S2(z;)), 3

HMU:

where cos(+) denotes the cosine similarity between two pre-
diction outputs. This constraint aims to explore the sample
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Algorithm 1 Proposed KOEnsAttack Method.
Input: Random noise Z ~ N (0,1), victim model V, sub-
stitute model S = (851, S2), generator G, epochs E, total
iters N, replay iters R, SHE iterative steps 7', and memory
bank D.
Output: (S1,S2)

1: fori =1to E do

2 forn =1to N do
3 // Hard Sample Generation
4 Generate a batch of data X + G(Z2)
5: Compute class diversity loss Lg
6: Update generator G using Lg
7 Let X' = X
8 fort =1toT do
9: Xt X + - sign(Vs Lgis).-
10: end for
11: Save hard samples X to D
12:  end for
13:  // Substitute Model Training
14.  forr =1to Rdo
15: Sampling data X from D
16: Compute L., for S; and S,
17: Update S; and So
18:  end for
19: end for

20: return (S1, S2)

space in search of synthetic samples that maximize the pre-
dictive discrepancy between the dual networks. Then, we
optimize the original synthetic samples by directly maxi-
mizing the Ly as follows:

—t+1
Ty

=T +a- sign(Vg Lais ), 4)

where VE,@ denotes the gradient of the loss function L
w.r.t. the hard sample Z! in the dual networks S; and Sa,
and a is the step size. The final hard sample Z; is obtained
by Z!', where T is the number of iterative steps.

3.3. Substitute Model Training

After obtaining the desired hard synthetic data X in the
phase 1, we can train the substitute model S by querying
the victim model V in phase 2. Most of the previous works
have only focused on how to train the substitute models to
better mimic the behavior of victim models. This objective
setting is actually sub-optimal. We believe that a new model
optimization objective should be reset to directly focus on
how to obtain a suitable substitute model on which adver-
sarial samples with high transferability against the specific
victim model can be easily generated.

Thus, for a particular victim model, how can we find the
most suitable substitute model for generating black-box ad-
versarial perturbations? Let us define H as a hypothesis set



that contains all classifiers that perform well on the spec-
ified classification task. We also reasonably assume that
the black-box model h; and two arbitrary substitute mod-
els h, h' satisfy hy, h,h' € H. When h and h' have deci-
sion boundaries similar to Ay, and their decision boundaries
are as orthogonal to each other as possible, any adversarial
sample that successfully misleads h and /' is higly likely to
successfully mislead hy. In this way, the model obtained by
integrating h and i’ can generate AEs that are highly likely
to transfer to the black-box hy.

As analyzed above, we propose the knowledge orthogo-
nalization module (KOM) to constrain the substitute train-
ing, encouraging the dual networks to learn complementary
and useful knowledge from the query feedback of the victim
model. The goal of KOM is to enhance the generalization
and transferability of adversarial samples generated on the
final surrogate ensemble model. Specially, the essence of
knowledge orthogonalization lies in linking certain intuitive
representations of the model to the abstract knowledge it
embodies, and constraining the knowledge learned by mul-
tiple students through specific and effective loss terms. In-
spired by related works [5, 23], we intend to perform the
knowledge orthogonalization at the logit level of the surro-
gate model’s output during the model training phase.

Knowledge Orthogonalization Module. Firstly, the pre-
diction behavior should be similar to that of the victim
model. This can be achieved using the loss as follows:

N

D lee(S1(Ti), V(E)) + Lee(Sa2(T0), V(T)), (5)

i=1

£C€

where £ (-) is the cross-entropy loss. Please note that V(+)
denotes one-hot outputs of the victim model since only la-
bel output can be accessible. To encourage each network
to learn useful information about different aspects of the
black-box model, we further propose the orthogonal loss
that measures the discrepancy between the non-target pre-
dicted logits of the dual networks:

Loy =Y [cos(M(81(:)), M(Sa(%:)))]

i=1

(6)

where M (-) is the logits of non-target classes. The goal of
L, is to enforce orthogonality among the non-target class
logit vectors of multiple students, enabling them to learn
richer and more complementary knowledge.

In summary, the total loss function in the KOM for the
substitute ensemble model as follows:

Eens = ﬁce + )\ﬁola (7)

where A controls the weight value of £,;. Please note that
during the substitute model training, the dual networks are
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updated in parallel. Finally, the adversarial examples are
generated by applying classic gradient-based white-box at-
tacks on the substitute model, where the aggregated gradi-
ents are used from the dual networks.

Furthermore, since querying new instances is expensive
(with pay-per-query systems), it implies that we need to
fully exploit the valuable information embedded in syn-
thetic samples instead of only using the online-generated
samples. At the same time, previous data-free works of-
ten fail to account for the distribution shift that occurs in
synthetic data during the substitute model training. This
oversight can lead to catastrophic forgetting, resulting in un-
satisfactory performance of the final model. Therefore, we
adopt the experience replay from existing work [12], aim-
ing to better leverage available synthetic data to improve the
training efficiency of the surrogate model. In particular, we
use a memory bank to store all previously synthesized data
optimized by the sample hardness enhancement. Then, af-
ter each substitute training step, we randomly select several
batches of synthetic samples from the memory bank to con-
solidate and reinforce the previously learned dark knowl-
edge. The algorithm is summarized in Algorithm 1.

4. Experiments

4.1. Experiment Setup

Datasets and Model Architectures. We consider four
datasets (SVHN [21], CIFAR-10 [13], CIFAR-100 [13] and
Tiny ImageNet [24]) which are commonly used in data-
free black-box attack research to verify the effectiveness
of our method. For the model architecture, we utilize the
pre-trained ResNet-18 [10], VGG-19 [26], ResNet-34 [10],
ResNet-50 [10], and ViT [7] as the victim models. The en-
semble of VGG-13 [26] and Inception-v3 [29] is adopted as
the default substitute model.

Compared Methods. We compare our method with var-
ious baselines: (1) Data-driven methods that require real
data as the proxy, i.e., DFMS [25], STDatav2 [27]; (2)
Data-free methods that truly do not rely on natural data, i.e.,
DEFME [30], DFTA [37], IDEAL [38] and DisGUIDE [23].

Attack Methods and Evaluation Metrics. We use several
classic white-box attack methods to generate AEs over the
well-trained substitute model, including FGSM [9], PGD
[18] and BIM [14]. The attack success rate (ASR) is calcu-
lated by N/Nyota as the evaluation metric, where N and
Niotar are the number of AEs that can fool the attacked
model and the total number of AEs, respectively.

Implementation Details. During training, we utilize Adam
and SGD to train our generator and substitute models from
Pytorch scratch, respectively. Following the hyperparam-
eter settings used in DFME [30], the Adam optimizer is
configured with an initial learning rate of 1 x 10~ and a
weight decay rate of 5 x 10~%. Similarly, the initial learn-



Type Settings |  Victim Dataset | SVHN | CIFAR-10 | CIFAR-100 | Tiny ImageNet
Hard Label ProxyData |  Target Model | ResNet-18 | VGG-19 ResNet-34  ViT | VGG-19 ResNet-34  ViT |  ResNet-50

X X DEME [30] 88.62 57.20 85.24 34.70 3.469 42.12 14.53 2.601

v v DEMS [25] 89.72 87.67 4321 12.40 2.819 8.413 4.947 0.292

v X DFTA [37] 17.26 27.38 27.22 12.05 4.997 11.81 7.284 0.020

Targeted v X IDEAL [38] 14.40 36.81 31.81 12.78 5.048 9.264 7.092 0.151
v X DisGUIDE [23] 75.15 69.46 95.32 31.56 29.02 57.20 18.34 1.025

v v STDatav2 [27] 86.10 95.13 91.48 44.23 18.58 43.37 14.18 0.121

v X ‘ KOEnsAttack (Ours) ‘ 92.07 ‘ 95.44 97.82 51.79 ‘ 42.87 60.48 32.35 ‘ 15.22

X X DFME [30] 95.86 95.20 97.14 64.17 81.88 95.21 T1.74 57.58

v v DFMS [25] 96.37 99.38 78.12 33.95 74.72 72.58 50.76 3427

v X DFTA [37] 41.60 57.17 52.90 33.70 68.68 73.34 55.86 8.479

Untargeted v X IDEAL [38] 33.83 71.55 64.12 33.16 70.27 71.63 55.60 24.67
v X DisGUIDE [23] 89.46 95.50 99.60 61.23 92.35 95.98 74.55 39.35

v v STDatav2 [27] 94.66 99.66 99.14 79.60 87.39 93.42 70.90 17.64

v X ‘ KOEnsAttack (Ours) ‘ 97.41 ‘ 99.89 99.78 82.60 ‘ 96.73 97.85 85.43 ‘ 78.23

Table 1. Comparison of our proposed KOEnsAttack with other competitors on four datasets. For fair comparison, we use PGD as the
attack method. Bolded texts indicate the best results, while underlines represent the second-best results.

ing rate of the SGD optimizer with the same weight decay
as above is set as 0.1. Meanwhile, we utilize learning rate
scheduler with a multiplying factor of 0.3 at intervals spec-
ified by fractions [40%, 80%] of the query budget as Dis-
GUIDE [23]. The model is trained on NVIDIA GeForce
GTX 3090 GPU. Additionally, we follow [25] to transform
a fraction of the generated samples to grayscale for enhanc-
ing the class diversity of the synthetic dataset.

4.2. Main Results

On Attacking Different Victim Models. As shown in
Table 1, we conduct extensive comparisons with competi-
tors from several aspects, i.e., the diverse datasets, various
target models, and different attack scenarios. We can see
that our method beats all competitors with a large margin
in terms of both targeted and non-targeted attack scenar-
ios, especially in the targeted attack scenario. Meanwhile,
the comparisons between our method and other baselines,
DFME [30], DFMS [25] and STDatav2 [27], are particu-
larly more noteworthy. First, unlike other baseline methods,
DFME uses the forward estimation approach to approxi-
mate the backpropagation gradients of the black-box model,
which requires access to the probability outputs from the
target model. Compared to the hard labels, soft labels pro-
vide richer class information, which often results in better
black-box attack performance. As shown in Table 1, among
all baseline methods, DFME achieves second-best perfor-
mance on the SVHN dataset and best performance on the
Tiny ImageNet dataset, respectively. Remarkably, even in
the scenario where only hard-label predictions are accessi-
ble, our method still outperforms DFME. Next, DFMS and
STDatav2 are the only two baseline methods that utilize ex-
ternal real data. Generally, the training efficiency of substi-
tute models can be greatly improved with additional prior
knowledge about the image distribution. As demonstrated
in Table 1, DFMS and STDatav2 demonstrate strong perfor-
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mance on small-scale datasets, respectively. Excitingly, our
KOEnsAttack, without relying on any real data prior, still
achieves superior black-box attack performance compared
to these two data-driven approaches.

Moreover, we show the curves about the attack success
rate of targeted PGD attacks for all methods under dif-
ferent black-box query budgets across various datasets in
Figure 3 (a)-(b). The results demonstrate that our method
is significantly more efficient compared to other baseline
approaches, substantially reducing the required black-box
query budget while maintaining the high transferability of
adversarial samples generated on the substitute model.

On the Combination with Different White-Box Attacks.
We further compare our methods with competitors when
combined with different white-box attacks on well-trained
substitute models. As illustrated in Table 2, we apply three
classic attacks to generate AEs over substitute models for
attacking the black-box victim models on four datasets.
Compared to other data-free black-box adversarial attacks,
our KOEnsAttack method can efficiently acquire highly
query-valuable synthetic samples through a few iterations
of enhancement and introduces a novel optimization objec-
tive during the model training phase to effectively train the
ensemble surrogate model. As a result, it achieves state-
of-the-art black-box attack performance even under limited
query budgets. Notably, it is well-known that FGSM, as the
most basic white-box attack, often generates AEs with poor
transferability on surrogate models. This also explains why
many baseline methods relying on FGSM-generated AEs
fail to effectively attack the target black-box model. In con-
trast, even when using FGSM to generate AEs, our method
still delivers strong black-box attack performance.

4.3. Further Analysis

To further explore the effects of different components in
our KOEnsAttack method, we conduct extensive ablation



Victim Dataset Target Model ‘ Method ‘ Query| ‘ Targeted ‘ Untargeted
\ \ | FGSM?  PGD?  BIMt | FGSMt PGDt  BIM?
DFME [30] 39.62 88.62  89.8l 76.68 95.86  96.18
DFMS [25] 40.26 89.72  90.66 85.57 96.37 9657
DFTA [37] M 8.694 1726 23.15 3351 4160 4543
SVHN ResNet-18 IDEAL [38] 7.286 1440 1692 30.81 3383 3617
DisGUIDE [23] 36.24 7515 76.90 70.93 8946  90.13
STDatav2 [27] 34.68 86.10  87.26 82.18 94.66 9477
| KOEnsAttack (Ours) | 2M | 44.59 9207 9290 | 87.38 9741  97.53
DFME [30] 17.63 8524 89.10 68.42 97.14  97.80
DFMS [25] 11.59 4321 5020 46.86 7812 79.50
DFTA [37] M 8.830 2722 3071 37.63 5290 5634
CIFAR-10 ResNet-34 IDEAL [38] 10.08 3181 3579 4541 6412 67.63
DisGUIDE [23] 21.81 9532  97.11 76.94 99.60  99.83
STDatav2 [27] 21.90 9148 9433 74.87 99.14  99.33
| KOEnsAttack (Ours) | 3M | 27.79 97.82  98.66 | 8278 99.78  99.88
DFME [30] 2.278 4212 5271 77.79 9521 9540
DFMS [25] 1.442 8413 10.84 7132 72.58 7281
DFTA [37] LM 1.332 11.81 16.12 62.83 7334 7492
CIFAR-100 ResNet-34 IDEAL [38] 1.610 9.264  12.63 61.10 7163 7395
DisGUIDE [23] 2581 5720 6824 81.81 9598  97.10
STDatav2 [27] 3.253 4337 4901 80.73 9342 93.16
| KOEnsAttack (Ours) | 4M | 5.021 6048  69.79 | 8544 9785  98.12
DFME [30] 0.462 2601 3.037 49.59 57.58  61.53
DFMS [25] 0.342 0292 0472 41.92 3427 37.94
DFTA [37] oM 0.000 0.020  0.000 0.000 8479 0.000
Tiny ImageNet ResNet-50 IDEAL [38] 0.302 0.151 0201 41.50 2467 3211
DisGUIDE [23] 0.854 1025 2051 62.77 3935 49.17
STDatav2 [27] 0.261 0.121  0.171 4276 17.64 2672
| KOEnsAttack (Qurs) | 4M | 2.201 1522 2312 | 7934 7823 85.65

Table 2. Comparing ASRs results among our method and competitors with various white-box adversarial example generation methods
across four datasets. For a fair comparison, we utilize the pair of VGG-13 and Inception-v3 as substitute model for all substitute training.

studies to validate the effects of key components and hyper-
parameters in our method.

Ablation Studies. First, we define the following ablation
terms in our experiments: (1) Baseline: maximizing the in-
formation entropy to optimize the generator and employing
the cross-entropy loss to constrain the outputs’ discrepancy
between each student and victim model; (2) KOM: min-
imizing the mimic loss between each student and victim
model while striving to orthogonalize the non-target class
vectors from multiple students; (3) SHE: iteratively trans-
forming the original synthetic samples through reversing
the gradient for improving training efficiency of the substi-
tute; (4) KOEnsAttack: simultaneously employing the sam-
ple hardness enhancement strategy and the knowledge or-
thogonalization module.

The results among the variants in Table 3 can be summa-
rized as the following: (1) Comparing the results between
the Baseline and KOM, it is evident that the knowledge or-
thogonalization module can help two students to better learn
complementary and valuable information from black-box
during model training, thereby generating more effective
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Type | Method | SVHN | CIFAR-10 | CIFAR-100 | Tiny
3 Baseline | 79.16 49.00 29.82 0.663
b +KOM | 8572 55.44 36.60 1.306
g +SHE | 90.80 93.74 58.31 8.186
a Ours 92.07 95.44 60.48 15.22
3 Baseline | 92.07 83.63 87.06 40.04
S +KOM | 9494 89.37 89.40 47.65
§ +SHE | 96.89 99.85 97.06 64.54
) Ours 97.41 99.89 97.85 78.23

Table 3. ASR results on variants of the proposed KOEnsAttack
method. The victim models are ResNet-18 for SVHN, VGG-19
for CIFAR-10, ResNet-34 for CIFAR-100, and ResNet-50 for Tiny
ImageNet, respectively.

adversarial samples to attack the victim model. (2) With
the SHE strategy, the ASRs have been significantly im-
proved. Such results demonstrates that the sample hardness
enhancement can efficiently explore the sample space under
specified constraints, identifying high query-value synthetic
samples after just a few iterations, which significantly re-
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Figure 3. Left: Comparison of our method and baselines under different query budgets on (a) SVHN and (b) CIFAR-10. Right: Parameter
analysis on (c) weight value A in KOM and (d) step 7" in SHE on CIFAR-10. The victim models on SVHN and CIFAR-10 are ResNet-18

and VGG-19, respectively.
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Figure 4. t-SNE visualization of synthetic data generated by (a)
STDatav2, (b) DisGUIDE, (c) IDEAL, (d) DFTA, (e) DFMS, and
(f) Ours.

duce black-box query budget required during model train-
ing. (3) Comparing the results between the Baseline and
KOEnsAttack, it is obvious that our KOEnsAttack method
achieves the best attack performance with the help of the
KOM and SHE. This further validates the compatibility and
effectiveness of both components.

About Hyper-Parameter Sensitivity. In the KOM, ) is the
hyper-parameter utilized to control the weight correspond-
ing to L,;. As shown in Figure 3, during the early training
phase, the attack performance of adversarial samples gen-
erated on the substitute varies significantly due to different
A values. Fortunately, as the number of black-box queries
increases, the black-box attack performance improves sub-
stantially across different weight \ settings, and the re-
sults gradually converge. This result also demonstrates that
KOM is robust and insensitive to this hyper-parameter. In
the SHE strategy, step 1" determines the number of itera-
tions for sample transforming. As shown in Figure 3, the
black-box attack performance steadily improves with the
increasing in the number of iterations. It is important to
note that more iterations also mean increased time spent on
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transforming samples. Therefore, in our experiments, we
typically choose an appropriate step 7' to ensure both strong
black-box attack performance and avoid excessive trans-
forming time that could impact subsequent model training.

Visualization of Synthesized Samples. We also provide
the visualization of the synthesized data for comparison in
ten classes, i.e., the victim model is trained on CIFAR-10
dataset. As shown in Figure4, compared to the baseline
methods, the synthesized data of our method are evenly dis-
tributed, which suggests a better sample generation for the
substitute model training.

5. Conclusion

In this paper, we design a novel Knowledge-Orthogonalized
Ensemble Attack (KOEnsAttack) method to tackle the data-
free black-box adversarial attack task. Through the sam-
ple hardness enhancement, we can efficiently explore the
data space based on original synthetic samples to obtain
new high query-valuable samples, greatly improving train-
ing efficiency of substitutes. Meanwhile, the knowledge
orthogonalization module introduces an effective optimiza-
tion objective for students, helping each student to learn
complementary and useful information, thereby training a
source model more suitable for black-box adversarial at-
tacks. The experiments over four general image classifica-
tion datasets show that our KOEnsAttack not only signifi-
cantly improves the attack performance against target mod-
els but also greatly reduces the required black-box query
budgets.
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