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Abstract

Data-free black-box attacks aim to attack a model with-

out access to either the model parameters or training data.

Existing methods use a generator to synthesize training

samples and then train a substitute model to imitate the

victim model. The adversarial examples (AEs) are finally

generated using the substitute model to transfer to the vic-

tim model. To this end, how to generate diverse train-

ing samples for substitute model training and improve the

transferability of AEs from the substitute model to vic-

tim model become the core challenges. In this paper,

we propose a Knowledge-Orthogonalized Ensemble Attack,

dubbed KOEnsAttack, to accomplish these two goals. We

first use dual networks as the ensemble substitute model,

and then propose a sample hardness enhancement to trans-

form the samples from the generator into hard samples that

exist in the controversial regions of the dual models for pro-

moting the sample diversity. Next, during the substitute

model training, we design a knowledge orthogonalization

module to guide the dual networks in learning complemen-

tary and useful information from the victim model, thereby

enhancing the transferability of adversarial samples gener-

ated on the final ensemble model. Extensive experiments on

several datasets are conducted to evaluate the effectiveness

of our method. The results show that the proposed method

can achieve superior performance compared with the state-

of-the-art competitors.

1. Introduction

Deep Neural Networks (DNNs) have emerged as the dom-

inant framework across various applications [4, 41] owing

to their demonstrated capacity for learning hierarchical rep-

resentations from complex data structures. However, recent

studies [16, 28, 33–35] have exposed an inherent suscep-

tibility of DNNs to adversarial examples (AEs), wherein
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Figure 1. Comparison of different generator-based data-free

black-box attacks. (a) A substitute model is trained to imitate the

victim model, however, the reasoning gap between the substitute

model and the victim model can be large due to the distribution

shift in the synthesized samples; (b) Recent methods extend dual

networks as the substitute model to minimize the gap, but the sam-

ple space are not fully explored which leads to under-optimal re-

sults; (c) We propose the knowledge-orthogonalized ensembles to

reinforce the generalization of the substitute model which can ef-

fectively improve the attack performance.

strategically crafted perturbations—often imperceptible to

human observers—can systematically deceive model pre-

dictions. This fundamental vulnerability raises critical con-

cerns regarding the operational security of DNN-based sys-

tems in real-world deployments. Consequently, the ma-

chine learning community has intensified efforts to ad-

dress this dichotomy through two complementary research

thrusts, namely adversarial attack and defense, for better

improving the robustness of networks.

Typically, adversarial attacks can be categorized as

white-box attacks [1, 18, 19, 28] and black-box attacks

[2, 15, 32] according to the level of access to the victim

model. Existing attacks can achieve near-optimal attack

performance under the white-box settings via reversing the

gradients as the perturbations; however, they would lead

to trivial solutions under the black-box settings where only

the input-output feedback of the victim model can be ac-

cessed. Modern black-box attacks typically leverage the

transferability of adversarial perturbations, crafting AEs on

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

3101



a pre-trained substitute model through specific operations

to threaten the target model. However, in more realistic set-

tings, the training data can also be unavailable, which limits

the training of substitute models, making the adversarial at-

tack still a struggle.

To address the “data-free” issue, a number of works [23,

25, 27, 30, 40] additionally utilize a well-designed genera-

tor to synthesize training samples for training the substitute

model. However, due to the distribution shift in the syn-

thesized training samples, the reasoning gap between the

substitute model and target model can be large and further

hinders the transferability of AEs, as shown in Figure 1 (a).

To minimize the gap, recent studies [23] propose the ensem-

ble substitute model that is composed of dual networks, and

then a disagreement loss is employed on the generator to

produce hard samples that can maximize the disagreement

between these two networks. These hard samples provide

the driving force to make the decision boundary of at least

one of the dual networks to align with the victim model

in each training epoch since they are misclassified by at

least one network in the ensemble, as shown in Figure 1 (b).

While remarkable progress can be achieved, we notice that

there still exist several limitations: First, the hard samples

in the controversial regions of the input space can play a

critical role in substitute model training because they can

not only help minimize the reasoning gap but also reduce

the query times since they are more effective than the easy

data. However, the loss optimization in the existing meth-

ods cannot fully explore the input space, especially when

combined with other objectives. Second, for the substitute

model training, existing methods only use the discrimina-

tion loss to imitate the victim model, neglecting the gener-

alization of the substitute model which potentially impedes

the transferability of the generated AEs.

In this paper, we design the Knowledge-Orthogonalized

Ensemble Attack, dubbed KOEnsAttack, for efficient data-

free black-box adversarial attacks. Specifically, we follow

the previous data-free adversarial attack pipeline where a

generator is employed to generate training samples and a

substitute model is trained on these samples with the query

feedback of the victim model. The AEs are finally gener-

ated by white-box attacks on the trained substitute model.

Instead of employing disagreement loss on the generator,

we propose to obtain the hard samples in a more direct and

effective way: iteratively adding the reversed gradients of

the discrepancy loss between two sub-networks to the orig-

inal samples, so that the generated samples can be differ-

ently classified in the dual networks. By such transforma-

tion, the samples are all hard samples for substitute model

training, which can effectively push the similarity to the

victim model and reduce the query times during training.

Meanwhile, we further design a knowledge orthogonaliza-

tion module to force the dual networks to learn complemen-

tary knowledge from the same black-box model, reinforcing

the generalization of the substitute model and finally im-

proving the transferability of the generated AEs, as shown

in Figure 1 (c). Our proposed method demonstrates 98.12%

untargeted attack success rate on CIFAR-100 dataset within

only 4M query times, surpassing the SOTA method Dis-

GUIDE [23] by 1.02% and a 6M query reduction.

The main contributions of our work can be summarized

as follows:

• We propose KOEnsAttack, a query-efficient black-box at-

tack method that employs an ensemble substitute model

trained on hard samples that exist in the controversial re-

gions of the sub-networks in the ensemble.

• We introduce the sample hardness enhancement (SHE)

for transforming the generated samples into hard samples

that are beneficial for substitute model training and effec-

tively reduce the black-box query budget.

• We further design the knowledge orthogonalization mod-

ule (KOM) to improve the generalization of the ensemble

substitute model, which consequently promotes the trans-

ferability of the generated AEs.

• Our empirical evaluations on various datasets under both

untargeted and targeted attacks demonstrate that the pro-

posed KOEnsAttack can achieve SOTA attack perfor-

mance with a large margin and significantly reduce the

query budgets during the substitute training process.

2. Related Work

Adversarial Attacks. Since Szegedy et al. [28] first illus-

trated the vulnerability of DNNs to adversarial examples,

extensive studies [6, 9, 17, 18, 22, 36, 39] have been con-

ducted to focus on adversarial attacks for misleading the

well-trained DNN models. In general, these methods can

be divided into white-box and black-box attacks according

to whether the attackers have access to the parameters or ar-

chitectures of the target model. By leveraging the reversed

gradients, white-box attacks can achieve high attack suc-

cess rates; however, the attack performance would degrade

severely under the black-box settings since attackers only

access the simple output of the victim model. A line of

methods [3, 8, 31] utilizes inputs query feedback to guide

the generation of adversarial perturbations, while another

line [2, 5, 11, 20] aims to improve the transferability of ad-

versarial examples crafted from a substitute model to un-

known models. Despite the achievements, in the more real-

istic scenarios, attackers can access neither the training data

nor the target model, i.e., data-free black-box setting, bring-

ing extra challenges in substitute model training.

Data-Free Black-Box Attacks. Exposed to the challenge

of data-free and black-box settings, recent works [23, 27,

30] proposed to employ a generator to generate train-

ing samples and then use these samples to train a substi-
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Figure 2. Illustration of our KOEnsAttack pipeline. A generator fed with random noise is first trained to produce synthetic data, followed

by the sample hardness enhancement (SHE) strategy to transform the samples into hard samples. Next, the ensemble substitute model is

trained via a knowledge orthogonalization module (KOM) to encourage the learning of valuable and complementary information from the

victim model.

tute model for generating transferable adversarial exam-

ples. DaST [40] is the first work to utilize a generator

with noise as input to synthesize data for querying the tar-

get model and training the substitute model. DFME [30]

and MAZE [12] further estimated the gradients of the vic-

tim model using black-box gradient estimators to force the

similarity between the substitute model and target model.

To improve the synthesized data quality, Sanyal et al. [25]

employed a generative adversarial network (GAN) frame-

work by introducing additional datasets as the proxy data to

improve the data quality. Rethinking the convergence fail-

ure and model collapse of previous methods between gen-

erator and substitute model, IDEAL [38] designed a pow-

erful black-box attack framework that two players are no

longer forced to directly compete in min-max game. Be-

sides, DisGUIDE [23] proposed to maximize the disagree-

ment loss between two surrogate models to force the gen-

erator to produce more query-valuable synthetic samples.

More recently, STDatav2 [27] introduces the joint-data op-

timization that leverages both synthesized and proxy data

and develops a self-conditional data synthesis framework

for improving data diversity. While remarkable progress

has been achieved, the loss-based optimization in sample

synthesis of these existing methods cannot fully explore the

sample space for substitute model training and the general-

ization ability of the substitute model should also be con-

sidered for transferability improvement.

3. Method

3.1. Overview

Our goal is to attack a model in a data-free and black-box

scenario. Given a black-box victim model V without any

knowledge (i.e., model structure, parameters, and training

data), we first introduce a generator G to synthesize training

samples X . And then a transparent white-box substitute

model S is trained on X to imitate V for generating AEs

that can be transferred to attack V . Note that we follow

the most realistic scenario that only the label output of V is

accessible, i.e., hard label setting.

We present KOEnsAttack, a generator-based framework

with an ensemble substitute model, to generate transferable

AEs for the victim model. Our KOEnsAttack boosts the

effective and efficient training of the substitute model by

transforming the generated samples into hard samples as

well as introducing knowledge orthogonalization into the

ensemble for improving the generalization. An overview

of our approach is shown in Fig. 2. It mainly consists of

two phases: (1) Hard Sample Generation and (2) Substi-

tute Model Training. The generator G is first trained to

synthesize the training samples that are used for the sub-

stitute model training. We utilize the sample hardness en-
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hancement to transform the output samples into hard sam-

ples. Then in phase 2, the substitute model S is trained on

the hard samples with the query feedback from the victim

model. Note that S is an ensemble of dual networks, de-

noted as S1 and S2, where the final ensemble output is an

average soft-vote of the dual networks.

3.2. Hard Sample Generation

In the first phase, the generator G takes noise Z as input

and output samples X . To be formal, given the noise Z
from Gaussian prior, Z ∼ N (0, 1), the generator G is uti-

lized to map Z to the synthetic samples X for querying vic-

tim model V . The synthetic samples X are expected to be

evenly distributed in the sample space and exist in the con-

troversial regions of the dual networks. Thus we first em-

ploy a class diversity loss to train the generator G, instead of

combining with a disagreement loss, we propose to directly

transform the generated samples into hard samples using the

sample hardness enhancement module.

Class Diversity Loss. We employ the class diversity loss to

balance the generated data distribution and promote the data

diversity. Specifically, we use information entropy to mea-

sure the confusion degree of the synthetic data, ensuring the

diversity of the generated sample categories. Given a batch

with batch size B of synthetic samples X = {xi}
B

i=1 =
G(Z), we first compute the corresponding prediction of the

substitute model as:

Pens(xi) =
1

2
(softmax(S1(xi)) + softmax(S2(xi))),

(1)

and then the generator G is optimized as the following loss:

LG =
1

B

B∑

i=1

K∑

k=1

P k

ens
(xi) log(P

k

ens
(xi)), (2)

where P k
ens

(xi) is the k-th element of Pens(xi), i.e., the

ensemble prediction score of the k-th class.

Sample Hardness Enhancement. Next, after updating G
using LG , we can obtain the samples X = G(Z). We pro-

pose to further move these samples to the controversial re-

gions of the dual networks in the substitute model. Inspired

by the gradient-based attack which has high success in mak-

ing samples cross the decision boundary, we propose to iter-

atively reverse the gradient of the discrepancy loss between

the dual networks on the samples. Specifically, the discrep-

ancy loss between the dual networks can be first computed

using the cosine similarity as:

Ldis =
1

B

B∑

i=1

cos(S1(xi),S2(xi)), (3)

where cos(·) denotes the cosine similarity between two pre-

diction outputs. This constraint aims to explore the sample

Algorithm 1 Proposed KOEnsAttack Method.

Input: Random noise Z ∼ N (0, 1), victim model V , sub-

stitute model S = (S1,S2), generator G, epochs E, total

iters N , replay iters R, SHE iterative steps T , and memory

bank D.

Output: (S1,S2)

1: for i = 1 to E do

2: for n = 1 to N do

3: // Hard Sample Generation

4: Generate a batch of data X ← G(Z)
5: Compute class diversity loss LG

6: Update generator G using LG

7: Let X
0
= X

8: for t = 1 to T do

9: X
t+1
← X

t

+ α · sign(∇
X

tLdis).
10: end for

11: Save hard samples X to D
12: end for

13: // Substitute Model Training

14: for r = 1 to R do

15: Sampling data X from D
16: Compute Lens for S1 and S2
17: Update S1 and S2
18: end for

19: end for

20: return (S1,S2)

space in search of synthetic samples that maximize the pre-

dictive discrepancy between the dual networks. Then, we

optimize the original synthetic samples by directly maxi-

mizing the Ldis as follows:

xt+1

i
= xt

i
+ α · sign(∇xt

i

Ldis), (4)

where ∇xt

i

denotes the gradient of the loss function Ldis

w.r.t. the hard sample xt

i
in the dual networks S1 and S2,

and α is the step size. The final hard sample xi is obtained

by xT

i
, where T is the number of iterative steps.

3.3. Substitute Model Training

After obtaining the desired hard synthetic data X in the

phase 1, we can train the substitute model S by querying

the victim model V in phase 2. Most of the previous works

have only focused on how to train the substitute models to

better mimic the behavior of victim models. This objective

setting is actually sub-optimal. We believe that a new model

optimization objective should be reset to directly focus on

how to obtain a suitable substitute model on which adver-

sarial samples with high transferability against the specific

victim model can be easily generated.

Thus, for a particular victim model, how can we find the

most suitable substitute model for generating black-box ad-

versarial perturbations? Let us define H as a hypothesis set
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that contains all classifiers that perform well on the spec-

ified classification task. We also reasonably assume that

the black-box model hb and two arbitrary substitute mod-

els h, h′ satisfy hb, h, h
′ ∈ H. When h and h′ have deci-

sion boundaries similar to hb, and their decision boundaries

are as orthogonal to each other as possible, any adversarial

sample that successfully misleads h and h′ is higly likely to

successfully mislead hb. In this way, the model obtained by

integrating h and h′ can generate AEs that are highly likely

to transfer to the black-box hb.

As analyzed above, we propose the knowledge orthogo-

nalization module (KOM) to constrain the substitute train-

ing, encouraging the dual networks to learn complementary

and useful knowledge from the query feedback of the victim

model. The goal of KOM is to enhance the generalization

and transferability of adversarial samples generated on the

final surrogate ensemble model. Specially, the essence of

knowledge orthogonalization lies in linking certain intuitive

representations of the model to the abstract knowledge it

embodies, and constraining the knowledge learned by mul-

tiple students through specific and effective loss terms. In-

spired by related works [5, 23], we intend to perform the

knowledge orthogonalization at the logit level of the surro-

gate model’s output during the model training phase.

Knowledge Orthogonalization Module. Firstly, the pre-

diction behavior should be similar to that of the victim

model. This can be achieved using the loss as follows:

Lce =

N∑

i=1

ℓce(S1(xi),V(xi)) + ℓce(S2(xi),V(xi)), (5)

where ℓce(·) is the cross-entropy loss. Please note that V(·)
denotes one-hot outputs of the victim model since only la-

bel output can be accessible. To encourage each network

to learn useful information about different aspects of the

black-box model, we further propose the orthogonal loss

that measures the discrepancy between the non-target pre-

dicted logits of the dual networks:

Lol =

N∑

i=1

|cos(M(S1(xi)),M(S2(xi)))| (6)

where M(·) is the logits of non-target classes. The goal of

Lol is to enforce orthogonality among the non-target class

logit vectors of multiple students, enabling them to learn

richer and more complementary knowledge.

In summary, the total loss function in the KOM for the

substitute ensemble model as follows:

Lens = Lce + λLol, (7)

where λ controls the weight value of Lol. Please note that

during the substitute model training, the dual networks are

updated in parallel. Finally, the adversarial examples are

generated by applying classic gradient-based white-box at-

tacks on the substitute model, where the aggregated gradi-

ents are used from the dual networks.

Furthermore, since querying new instances is expensive

(with pay-per-query systems), it implies that we need to

fully exploit the valuable information embedded in syn-

thetic samples instead of only using the online-generated

samples. At the same time, previous data-free works of-

ten fail to account for the distribution shift that occurs in

synthetic data during the substitute model training. This

oversight can lead to catastrophic forgetting, resulting in un-

satisfactory performance of the final model. Therefore, we

adopt the experience replay from existing work [12], aim-

ing to better leverage available synthetic data to improve the

training efficiency of the surrogate model. In particular, we

use a memory bank to store all previously synthesized data

optimized by the sample hardness enhancement. Then, af-

ter each substitute training step, we randomly select several

batches of synthetic samples from the memory bank to con-

solidate and reinforce the previously learned dark knowl-

edge. The algorithm is summarized in Algorithm 1.

4. Experiments

4.1. Experiment Setup

Datasets and Model Architectures. We consider four

datasets (SVHN [21], CIFAR-10 [13], CIFAR-100 [13] and

Tiny ImageNet [24]) which are commonly used in data-

free black-box attack research to verify the effectiveness

of our method. For the model architecture, we utilize the

pre-trained ResNet-18 [10], VGG-19 [26], ResNet-34 [10],

ResNet-50 [10], and ViT [7] as the victim models. The en-

semble of VGG-13 [26] and Inception-v3 [29] is adopted as

the default substitute model.

Compared Methods. We compare our method with var-

ious baselines: (1) Data-driven methods that require real

data as the proxy, i.e., DFMS [25], STDatav2 [27]; (2)

Data-free methods that truly do not rely on natural data, i.e.,

DFME [30], DFTA [37], IDEAL [38] and DisGUIDE [23].

Attack Methods and Evaluation Metrics. We use several

classic white-box attack methods to generate AEs over the

well-trained substitute model, including FGSM [9], PGD

[18] and BIM [14]. The attack success rate (ASR) is calcu-

lated by N/Ntotal as the evaluation metric, where N and

Ntotal are the number of AEs that can fool the attacked

model and the total number of AEs, respectively.

Implementation Details. During training, we utilize Adam

and SGD to train our generator and substitute models from

Pytorch scratch, respectively. Following the hyperparam-

eter settings used in DFME [30], the Adam optimizer is

configured with an initial learning rate of 1 × 10−4 and a

weight decay rate of 5 × 10−4. Similarly, the initial learn-
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Type
Settings Victim Dataset SVHN CIFAR-10 CIFAR-100 Tiny ImageNet

Hard Label Proxy Data Target Model ResNet-18 VGG-19 ResNet-34 ViT VGG-19 ResNet-34 ViT ResNet-50

Targeted

✗ ✗ DFME [30] 88.62 57.20 85.24 34.70 3.469 42.12 14.53 2.601

✓ ✓ DFMS [25] 89.72 87.67 43.21 12.40 2.819 8.413 4.947 0.292

✓ ✗ DFTA [37] 17.26 27.38 27.22 12.05 4.997 11.81 7.284 0.020

✓ ✗ IDEAL [38] 14.40 36.81 31.81 12.78 5.048 9.264 7.092 0.151

✓ ✗ DisGUIDE [23] 75.15 69.46 95.32 31.56 29.02 57.20 18.34 1.025

✓ ✓ STDatav2 [27] 86.10 95.13 91.48 44.23 18.58 43.37 14.18 0.121

✓ ✗ KOEnsAttack (Ours) 92.07 95.44 97.82 51.79 42.87 60.48 32.35 15.22

Untargeted

✗ ✗ DFME [30] 95.86 95.20 97.14 64.17 81.88 95.21 71.74 57.58

✓ ✓ DFMS [25] 96.37 99.38 78.12 33.95 74.72 72.58 50.76 34.27

✓ ✗ DFTA [37] 41.60 57.17 52.90 33.70 68.68 73.34 55.86 8.479

✓ ✗ IDEAL [38] 33.83 71.55 64.12 33.16 70.27 71.63 55.60 24.67

✓ ✗ DisGUIDE [23] 89.46 95.50 99.60 61.23 92.35 95.98 74.55 39.35

✓ ✓ STDatav2 [27] 94.66 99.66 99.14 79.60 87.39 93.42 70.90 17.64

✓ ✗ KOEnsAttack (Ours) 97.41 99.89 99.78 82.60 96.73 97.85 85.43 78.23

Table 1. Comparison of our proposed KOEnsAttack with other competitors on four datasets. For fair comparison, we use PGD as the

attack method. Bolded texts indicate the best results, while underlines represent the second-best results.

ing rate of the SGD optimizer with the same weight decay

as above is set as 0.1. Meanwhile, we utilize learning rate

scheduler with a multiplying factor of 0.3 at intervals spec-

ified by fractions [40%, 80%] of the query budget as Dis-

GUIDE [23]. The model is trained on NVIDIA GeForce

GTX 3090 GPU. Additionally, we follow [25] to transform

a fraction of the generated samples to grayscale for enhanc-

ing the class diversity of the synthetic dataset.

4.2. Main Results

On Attacking Different Victim Models. As shown in

Table 1, we conduct extensive comparisons with competi-

tors from several aspects, i.e., the diverse datasets, various

target models, and different attack scenarios. We can see

that our method beats all competitors with a large margin

in terms of both targeted and non-targeted attack scenar-

ios, especially in the targeted attack scenario. Meanwhile,

the comparisons between our method and other baselines,

DFME [30], DFMS [25] and STDatav2 [27], are particu-

larly more noteworthy. First, unlike other baseline methods,

DFME uses the forward estimation approach to approxi-

mate the backpropagation gradients of the black-box model,

which requires access to the probability outputs from the

target model. Compared to the hard labels, soft labels pro-

vide richer class information, which often results in better

black-box attack performance. As shown in Table 1, among

all baseline methods, DFME achieves second-best perfor-

mance on the SVHN dataset and best performance on the

Tiny ImageNet dataset, respectively. Remarkably, even in

the scenario where only hard-label predictions are accessi-

ble, our method still outperforms DFME. Next, DFMS and

STDatav2 are the only two baseline methods that utilize ex-

ternal real data. Generally, the training efficiency of substi-

tute models can be greatly improved with additional prior

knowledge about the image distribution. As demonstrated

in Table 1, DFMS and STDatav2 demonstrate strong perfor-

mance on small-scale datasets, respectively. Excitingly, our

KOEnsAttack, without relying on any real data prior, still

achieves superior black-box attack performance compared

to these two data-driven approaches.

Moreover, we show the curves about the attack success

rate of targeted PGD attacks for all methods under dif-

ferent black-box query budgets across various datasets in

Figure 3 (a)-(b). The results demonstrate that our method

is significantly more efficient compared to other baseline

approaches, substantially reducing the required black-box

query budget while maintaining the high transferability of

adversarial samples generated on the substitute model.

On the Combination with Different White-Box Attacks.

We further compare our methods with competitors when

combined with different white-box attacks on well-trained

substitute models. As illustrated in Table 2, we apply three

classic attacks to generate AEs over substitute models for

attacking the black-box victim models on four datasets.

Compared to other data-free black-box adversarial attacks,

our KOEnsAttack method can efficiently acquire highly

query-valuable synthetic samples through a few iterations

of enhancement and introduces a novel optimization objec-

tive during the model training phase to effectively train the

ensemble surrogate model. As a result, it achieves state-

of-the-art black-box attack performance even under limited

query budgets. Notably, it is well-known that FGSM, as the

most basic white-box attack, often generates AEs with poor

transferability on surrogate models. This also explains why

many baseline methods relying on FGSM-generated AEs

fail to effectively attack the target black-box model. In con-

trast, even when using FGSM to generate AEs, our method

still delivers strong black-box attack performance.

4.3. Further Analysis

To further explore the effects of different components in

our KOEnsAttack method, we conduct extensive ablation
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Victim Dataset Target Model Method Query↓
Targeted Untargeted

FGSM↑ PGD↑ BIM↑ FGSM↑ PGD↑ BIM↑

SVHN ResNet-18

DFME [30]

2M

39.62 88.62 89.81 76.68 95.86 96.18

DFMS [25] 40.26 89.72 90.66 85.57 96.37 96.57

DFTA [37] 8.694 17.26 23.15 33.51 41.60 45.43

IDEAL [38] 7.286 14.40 16.92 30.81 33.83 36.17

DisGUIDE [23] 36.24 75.15 76.90 70.93 89.46 90.13

STDatav2 [27] 34.68 86.10 87.26 82.18 94.66 94.77

KOEnsAttack (Ours) 2M 44.59 92.07 92.90 87.38 97.41 97.53

CIFAR-10 ResNet-34

DFME [30]

8M

17.63 85.24 89.10 68.42 97.14 97.80

DFMS [25] 11.59 43.21 50.20 46.86 78.12 79.50

DFTA [37] 8.830 27.22 30.71 37.63 52.90 56.34

IDEAL [38] 10.08 31.81 35.79 45.41 64.12 67.63

DisGUIDE [23] 21.81 95.32 97.11 76.94 99.60 99.83

STDatav2 [27] 21.90 91.48 94.33 74.87 99.14 99.33

KOEnsAttack (Ours) 3M 27.79 97.82 98.66 82.78 99.78 99.88

CIFAR-100 ResNet-34

DFME [30]

10M

2.278 42.12 52.71 77.79 95.21 95.40

DFMS [25] 1.442 8.413 10.84 71.32 72.58 72.81

DFTA [37] 1.332 11.81 16.12 62.83 73.34 74.92

IDEAL [38] 1.610 9.264 12.63 61.10 71.63 73.95

DisGUIDE [23] 2.581 57.20 68.24 81.81 95.98 97.10

STDatav2 [27] 3.253 43.37 49.01 80.73 93.42 93.16

KOEnsAttack (Ours) 4M 5.021 60.48 69.79 85.44 97.85 98.12

Tiny ImageNet ResNet-50

DFME [30]

10M

0.462 2.601 3.037 49.59 57.58 61.53

DFMS [25] 0.342 0.292 0.472 41.92 34.27 37.94

DFTA [37] 0.000 0.020 0.000 0.000 8.479 0.000

IDEAL [38] 0.302 0.151 0.201 41.50 24.67 32.11

DisGUIDE [23] 0.854 1.025 2.051 62.77 39.35 49.17

STDatav2 [27] 0.261 0.121 0.171 42.76 17.64 26.72

KOEnsAttack (Ours) 4M 2.201 15.22 23.12 79.34 78.23 85.65

Table 2. Comparing ASRs results among our method and competitors with various white-box adversarial example generation methods

across four datasets. For a fair comparison, we utilize the pair of VGG-13 and Inception-v3 as substitute model for all substitute training.

studies to validate the effects of key components and hyper-

parameters in our method.

Ablation Studies. First, we define the following ablation

terms in our experiments: (1) Baseline: maximizing the in-

formation entropy to optimize the generator and employing

the cross-entropy loss to constrain the outputs’ discrepancy

between each student and victim model; (2) KOM: min-

imizing the mimic loss between each student and victim

model while striving to orthogonalize the non-target class

vectors from multiple students; (3) SHE: iteratively trans-

forming the original synthetic samples through reversing

the gradient for improving training efficiency of the substi-

tute; (4) KOEnsAttack: simultaneously employing the sam-

ple hardness enhancement strategy and the knowledge or-

thogonalization module.

The results among the variants in Table 3 can be summa-

rized as the following: (1) Comparing the results between

the Baseline and KOM, it is evident that the knowledge or-

thogonalization module can help two students to better learn

complementary and valuable information from black-box

during model training, thereby generating more effective

Type Method SVHN CIFAR-10 CIFAR-100 Tiny

T
ar

g
et

ed

Baseline 79.16 49.00 29.82 0.663

+ KOM 85.72 55.44 36.60 1.306

+ SHE 90.80 93.74 58.31 8.186

Ours 92.07 95.44 60.48 15.22

U
n

ta
rg

et
ed Baseline 92.07 83.63 87.06 40.04

+ KOM 94.94 89.37 89.40 47.65

+ SHE 96.89 99.85 97.06 64.54

Ours 97.41 99.89 97.85 78.23

Table 3. ASR results on variants of the proposed KOEnsAttack

method. The victim models are ResNet-18 for SVHN, VGG-19

for CIFAR-10, ResNet-34 for CIFAR-100, and ResNet-50 for Tiny

ImageNet, respectively.

adversarial samples to attack the victim model. (2) With

the SHE strategy, the ASRs have been significantly im-

proved. Such results demonstrates that the sample hardness

enhancement can efficiently explore the sample space under

specified constraints, identifying high query-value synthetic

samples after just a few iterations, which significantly re-
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Figure 3. Left: Comparison of our method and baselines under different query budgets on (a) SVHN and (b) CIFAR-10. Right: Parameter

analysis on (c) weight value λ in KOM and (d) step T in SHE on CIFAR-10. The victim models on SVHN and CIFAR-10 are ResNet-18

and VGG-19, respectively.

(a) (b) (c) 

(d) (e) (f) 

Figure 4. t-SNE visualization of synthetic data generated by (a)

STDatav2, (b) DisGUIDE, (c) IDEAL, (d) DFTA, (e) DFMS, and

(f) Ours.

duce black-box query budget required during model train-

ing. (3) Comparing the results between the Baseline and

KOEnsAttack, it is obvious that our KOEnsAttack method

achieves the best attack performance with the help of the

KOM and SHE. This further validates the compatibility and

effectiveness of both components.

About Hyper-Parameter Sensitivity. In the KOM, λ is the

hyper-parameter utilized to control the weight correspond-

ing to Lol. As shown in Figure 3, during the early training

phase, the attack performance of adversarial samples gen-

erated on the substitute varies significantly due to different

λ values. Fortunately, as the number of black-box queries

increases, the black-box attack performance improves sub-

stantially across different weight λ settings, and the re-

sults gradually converge. This result also demonstrates that

KOM is robust and insensitive to this hyper-parameter. In

the SHE strategy, step T determines the number of itera-

tions for sample transforming. As shown in Figure 3, the

black-box attack performance steadily improves with the

increasing in the number of iterations. It is important to

note that more iterations also mean increased time spent on

transforming samples. Therefore, in our experiments, we

typically choose an appropriate step T to ensure both strong

black-box attack performance and avoid excessive trans-

forming time that could impact subsequent model training.

Visualization of Synthesized Samples. We also provide

the visualization of the synthesized data for comparison in

ten classes, i.e., the victim model is trained on CIFAR-10

dataset. As shown in Figure 4, compared to the baseline

methods, the synthesized data of our method are evenly dis-

tributed, which suggests a better sample generation for the

substitute model training.

5. Conclusion

In this paper, we design a novel Knowledge-Orthogonalized

Ensemble Attack (KOEnsAttack) method to tackle the data-

free black-box adversarial attack task. Through the sam-

ple hardness enhancement, we can efficiently explore the

data space based on original synthetic samples to obtain

new high query-valuable samples, greatly improving train-

ing efficiency of substitutes. Meanwhile, the knowledge

orthogonalization module introduces an effective optimiza-

tion objective for students, helping each student to learn

complementary and useful information, thereby training a

source model more suitable for black-box adversarial at-

tacks. The experiments over four general image classifica-

tion datasets show that our KOEnsAttack not only signifi-

cantly improves the attack performance against target mod-

els but also greatly reduces the required black-box query

budgets.
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