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ABSTRACT

Existing black-box model inversion attacks mainly focus on

training and attacking surrogate models. However, due to the

deployment process of face recognition models, training sur-

rogate models becomes extremely difficult in practice. At the

same time, query-based black-box inversion attacks still suf-

fer from low image quality and high computational costs. To

bridge these gaps, in this paper, we propose BMI-S, a sparse

black-box inversion attack against face recognition models.

BMI-S first introduces evolution strategies to perform effi-

cient black-box gradient estimation and achieve query-based

attacks. Meanwhile, BMI-S performs sparse attacks on the

key styles that contribute most to the face recognition process.

By only optimizing key style control vectors, BMI-S further

narrows the dimensions of the search space and accelerates

the inversion attacks.

Index Terms— model inversion, deep neural network,

data privacy

1. INTRODUCTION

Recent studies find that deep learning models are vulnera-

ble to model inversion attacks [1, 2, 3, 4]. Guided by the

output of the victim model, malicious users can reconstruct

privacy-sensitive characteristics of the training set, which

leads to a great threat of privacy leakage. Fredrikson et

al. [1, 2] first achieve white-box model inversion attacks on

linear regression models and shallow neural networks, using

a gradient-based approach. However, this method fails to

provide a meaningful result when dealing with more complex

deep neural networks. Therefore, some later researches in-

troduce the Generative Adversarial Network (GAN) into the

model inversion process and improve the quality of reversed

examples [3, 5, 6].

Limitations of previous methods. Despite the success of

white-box inversion attacks, existing efforts under black-box

constraints are still faced with the following challenges:

(C1) Most black-box inversion attacks are based on train-

ing and attacking a surrogate model [7, 8, 9], which requires
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additional training costs. Moreover, when focusing on face

recognition tasks, the deployment process of face recognition

models may cause it difficult to train surrogate models (which

we will further illustrate in Section 3).

(C2) The query-based method [4] suffer from high com-

putational costs. Thus the required query numbers and the

quality of reversed images are unacceptable.

To address the above-mentioned challenges, in this paper,

we propose BMI-S, a sparse black-box model inversion at-

tack against face recognition models. Taking advantage of

evolution strategies, we replace the gradient calculation pro-

cess with black-box gradient estimation in GAN-based white-

box attacks [3, 5, 6], and expand the GAN-based method to

black-box constraints. Furthermore, we explore the semantic

relationship of the GAN’s input and the features of reversed

images, then sparsely optimize the key styles that are criti-

cal to the recognition process. Our main contributions can be

summarized as follows:

• We propose an efficient black-box model inversion at-

tack method: BMI-S. The proposed method is query-

based, thus it is applicable for face recognition condi-

tions where training surrogate models is difficult (ad-

dressing C1).

• We perform sparse attacks based on styles, which nar-

rows the search space. The reversed images of our

method have a high quality and the attack process is

significantly accelerated. (addressing C2).

2. RELATED WORK

White-box model inversion attacks. Model inversion at-

tacks (MIAs) aim to reconstruct the privacy features of

the training data. Fredrikson et al. [1] first implemented

model inversion attacks on linear regression models using a

gradient-based approach [2]. However, these initial attacks

fail to produce meaningful results when processing deep neu-

ral networks (DNNs) with more complex architectures. To

perform model inversion attacks on DNNs, Zhang et al. [3]

introduce the Generative Adversarial Network (GAN) to

reduce the search space, the GAN-based model inversion

attacks (GMI) provide results with meaningful semantic in-

formation. Recent researches mainly follow the GMI [3] and



attempt to improve it from different perspectives. Struppek

et al. [5] apply random augmentations to the intermediate

results to enhance the robustness of the attacks. Khosravy

et al. [6] conclude that the sparse distribution of features in

the search space limits the attack efficiency, thus they use

VAE-GAN [10] to overcome the tackle.

Black-box model inversion attacks. Black-box model

inversion attacks can be mainly divided into transfer-based

attacks and query-based attacks. Existing methods mainly

explore the transfer-based attack [7, 8, 9]. In transfer-based

attacks, adversaries first train a surrogate model with a simi-

lar performance to the target model and then perform white-

box attacks on the surrogate model to get inversion results.

Mehnaz et al. [4] propose the first query-based black-box

model inversion attack. However, the time complexity of

their method is linearly and positively related to the dimen-

sions of the data, making it less practicable when dealing

with high-dimensional data.

3. METHODOLOGY

3.1. Problem Formulation

Deep face recognition (training). Denote the target face

recognition model as F , a benign face example as x. The

training process of F is to build up a mapping F : x → y,

where y = {y0, y1, ..., yn|y ∈ [0, 1]} represents the predic-

tion result of N categories.

Deep face recognition (deployment). In practice, face

recognition models are usually not used to recognize faces in

the training set. The deployment of a trained face recognition

model can be divided into two steps: (1) Face registration.

The model owner uses the trained face recognition model to

extract and store the features of several registered faces (e.g.

faces of a company’s employers). (2) Face inference. When

fed with an input image, the model first extracts its features

and compares the features with those of registered faces, then

makes predictions based on the similarity of features.

Model inversion attack. For MIA, the adversary’s goal

is to reconstruct a synthetic image x̂k which contains privacy

features of the target class k [5]. A straightforward way is to

define the process as the following optimization problem:

x̂k = argmin
x̂k

L(F, x̂k, k) (1)

where L denotes the classification loss (e.g. cross-entropy

loss). However, since semantic-meaningful images are

sparsely distributed in the feature space [6], Equation 1 of-

ten falls into local minima and fails to produce meaningful

results.

Recent MIA methods [3, 5, 6] introduce the GAN struc-

ture to narrow the search space and generate semantic-

meaningful images. Denote the GAN as G and the input

vector of the GAN as z, then the optimization problem in

Equation 1 can be reformulated as:

z = argmin
z

L(F,G(z), k) (2)

where the search space of z is much smaller than x̂k in Equa-

tion 1.

For black-box conditions, recent researches provide two

approaches to solve the optimization problem defined in

Equation 2: transfer-based attack [7, 8, 9] and query-based

attack [4]. However, it is difficult to train a surrogate model

for face recognition tasks in practice.

Why it is difficult to train a surrogate model for face
recognition tasks in practice? Training a surrogate model

is to mimic the behaviors of the teacher model towards dif-

ferent inputs. However, according to the deployment of face

recognition models, the outputs of deployed models are nar-

rowed to a much smaller space, which makes it difficult for

the surrogate model to learn from the teacher model. There-

fore, it is more practicable to perform query-based attacks on

face recognition models.

3.2. Black-box Model Gradient Estimation

Some previous researches implement gradient-estimation-

based adversarial attacks under black-box conditions [11, 12,

13]. The proposed methods show that the Natural Evolu-

tion Strategy (NES) [14] is a cost-acceptable way to estimate

gradients. We also use NES as the black-box gradient estima-

tor in BMI-S. Combining with Equation 2, a one-step NES

gradient estimation can be expressed as follow:

ĝz =
1

m

m∑

i=1

L(F,G(z + μδi), k) · δi (3)

where ĝz denotes the estimated gradient and μ denotes a

small smooth parameter (e.g. 0.001). The NES estimator first

randomly initialize m vectors {δ0, δ1, ..., δm}, representing

potential gradient directions. Then the estimator use the loss

function L to evaluate each random direction. Finally, the

estimated gradient is calculated as a weighted average of m
random directions.

After the one-step gradient estimation, BMI-S update the

input vector z as:

zi+1 = zi + lr · ĝz (4)

where i denotes the number of current iterations and lr
denotes the learning rate of the optimization process.

For adversarial attacks, an imperfect gradient estimator is

sufficient to perform a successful attack [12]. However, the

original NES-based gradient estimator often gets stuck in lo-

cal minima when performing model inversion attacks because

the distribution of the target z in the search space is narrow.

Therefore, we further improve the gradient estimation process

by performing sparse attacks.



3.3. Style-based Sparse Attack

Following the Plug&Play Attack [5], we choose Style-

GAN2 [15] as the image generator. The image generation

process of StyleGAN2 is a two-step process as follow:

w = {w1,w2, ...,wq} = M(z) (5)

the model first use a mapping function M to map the input

vector z into q style vectors: w = {w1,w2, ...,wq}. These

vectors are transport to different layers of the generator and

control different characteristics of generated images.

x = S(w,n), (6)

Then the model use the generate function S to construct the

final image x, where n denotes the random noise witch con-

trols the details of images (e.g., skin texture). Therefore, the

optimization problem in Equation 2 changes to:

w = argmin
w

L(F, S(w,n), k) (7)

According to the evaluation of StyleGAN2 [15], the au-

thor find that style vectors w transported to different layers

control different characteristics. Thus we consider to choose

style vectors that have major contribution to the evaluation

function F . By only updating these key style vectors and

leaving others unchanged, we can further narrow the search

space and accelarate the optimization problem.

Intuitively, some identity features (e.g., the eye and nose)

of a face image are more important than some others (e.g. the

hairstyle). By searching for the key style vectors that con-

trol the more important identity features, BMI-S sufficiently

narrows the dimensions of search space.

4. EXPERIMENTS

4.1. Experimental Settings

Dataset. We mainly use two face recognition datasets to eval-

uate our method, CelebA [16] and MUCT [17].

Model. For face recognition models, we use the open-source

pre-trained IR-50 [18] and IR-101 [18] provided by TFace1.

As for GAN-based face generation, we use StyleGAN2 model

pre-trained on the FFHQ dataset provided by [15].

Baseline Method. We fine-tune the query-based inversion

attack method in [4] to face recognition tasks as a base-

line method. Since it has a similar attack process like FD

attack [11] which is originally used to perform adversarial at-

tacks, we use FD to represent the fine-tuned method.

Metrics. We evaluate our method using three metrics. (1)

Success Rate (SR): the percentage of results that satisfy the

success condition. (2) Fréchet Inception Distance inception

distance (FID) [19]: the feature distance score used to evalu-

ate images generated by GANs. (3) Confidence Score (CS):

1https://github.com/Tencent/TFace/tree/master/recognition

the similarity score of origin and reversed images produced

by the online face comparison model2.

Attack Settings. For StyleGAN2, we set the number of style

control vectors as 4, and the input dimensions as 512. For

each attack, the maximum query times is 30, 000. The suc-

cess condition is that the reversed feature vector have a cosine

similarity score s > 0.75 with the registered feature vector.

The population size of NES is 20. We implemented BMI and

BMI-S on the Pytorch [20] platform.

4.2. Transfer-based Attacks
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Fig. 1. Evaluation results of transfer-based attacks. For each

epoch, we perform GAN-based white-box model inversion at-

tacks on the surrogate model and calculate the FID score. The

FID baseline is calculated between real images. We give three

pairs of original and reversed images on the right side by at-

tacking the final fixed surrogate model.

We fist perform some experiments to illustrate it is diffi-

cult to train a surrogate model for a deployed face recogni-

tion model. We use a pre-trained IR-101 model as the teacher

model and use another untrained IR-50 model as the student

model. Then we randomly choose 10 images from CelebA as

the registered faces. For each input image, the teacher model

will output the similarity scores of the input image with the

registered ones. Thus the goal of the student model is to out-

put similar scores like the teacher model when given a test

image. We train the student model for 100 epochs and record

the mean loss of each epoch. For each epoch, we perform

a white-box model inversion attack using the Plug&Play at-

tack [5] to get several reversed images and calculate the FID

score using original and reversed images.

According to Fig 1, after 100 epochs of training, the train-

ing loss become stable. However, the reversed images are still

far different from the original ones from both FID and visual

perspectives, which proves that the student model fail to learn

a similar feature extraction ability from the teacher model.

Therefore, performing transfer-based inversion attacks on a

deployed face recognition model will be difficult.

2https://cloud.tencent.com/product/facerecognition



Table 1. Performance comparison of three query-based

black-box model inversion attacks against different dataset

and target models. The evaluation metrics include Succeess

Rate (SR), Frechet inception distance (FID), and Confidence

Score (CS).
Dataset Model Method SR↑ FID↓ CS↑

CelebA

IR-50
FD 0.09 192.50 0.0364

BMI 0.79 150.83 0.7211
BMI-S 0.86 105.08 0.7518

IR-101
FD 0.07 170.94 0.0485

BMI 0.81 138.76 0.7449
BMI-S 0.88 98.13 0.7913

MUCT

IR-50
FD 0.05 237.35 0.0264

BMI 0.74 187.78 0.6236
BMI-S 0.82 129.11 0.7148

IR-101
FD 0.03 220.50 0.0297

BMI 0.76 174.68 0.6864
BMI-S 0.84 130.06 0.7115

4.3. Performance Comparison

We then list the overall performance of different query-based

methods in Tab 1. According to Tab 1, we have following

observations: (1) FD fails to produce meaningful results with

acceptable queries because it requires 1024 queries for each

gradient estimation step, while the number is 20 for BMI and

BMI-S. (2) Compared with BMI, BMI-S achieves a higher

success rate and lower FID score due to the smaller search

space narrowed by sparse attack. (3) BMI and BMI-S have

better performances on IR-101 than IR-50, which indicates

that the feature extraction ability of the target model will also

affect the quality of reversed images.
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Fig. 2. Results of BMI-S, BMI, and FD attacks against IR-

50 models. Registered images are randomly selected from

CelebA dataset. Reversed images with green borders indicate

that they can pass the online face comparison service, while

those with red borders fail to.

Fig 2 gives a visual example of the results generated by

different query-based attacks. It can be observed that BMI-S

achieves the highest similarity compared with the other two

methods, and most results of BMI-S can pass the online face

comparison service. Compared with BMI-S, BMI is less ro-

bust since it has a larger search space than BMI-S, and thus

is easier to get stuck in local minima. Meanwhile, FD fails

to provide meaningful results because of the limitation of its

computational complexity.

4.4. Method Analysis
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Fig. 3. Comparison of gradient estimation accuracy of dif-

ferent methods and FID with different number of key style

vectors.

For the analysis of BMI-S, we do some validation exper-

iments to evaluate the effects of (1) NES gradient estimation

and (2) key style vector selection. For the comparison of gra-

dient estimation, we calculate the cosine similarity of esti-

mated gradients produced by three different methods and true

gradients (white-box gradients), then divide the cosine simi-

larity with the query numbers required to get the results. Ac-

cording to Fig 3, compared with FD, BMI and BMI-S sig-

nificantly increase the estimation accuracy per query. Mean-

while, the mean FID score varies with the variation of the

number n that style control vectors are selected, where too

small n can not provide sufficient variation while too large n
may lead to larger search space and less robustness. Accord-

ing to Fig 3, n = 4 is the best choice under this condition.

5. CONCLUSION

In this paper, we focus on face recognition tasks and explore

model inversion attacks under black-box constraints. We first

prove that training surrogate models for deployed face recog-

nition systems is difficult. Then we propose BMI-S, a sparse

black-box model inversion attack. BMI-S uses Natural Evolu-

tion Strategy to perform efficient gradient estimation, which

enables query-based attacks. In addition, we accelerate the

gradient estimation process by selecting and only optimizing

the key style vectors of the image generator. Experimental

results on widely used datasets show that BMI-S can achieve

high-quality model inversion attacks with limited information

and queries.
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