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ABSTRACT

Deep Learning (DL) has emerged as a promising means for vulner-

ability detection due to its ability to automatically derive features

from vulnerable code. Unfortunately, current solutions struggle to

focus on vulnerability-related parts of vulnerable functions, and

tend to exploit spurious correlations for prediction, thus under-

mining their effectiveness in practice. In this paper, we propose

Snopy, a novel DL-based approach, which bridges sample denoising

with causal graph learning to capture real vulnerability patterns

from vulnerable samples with numerous noise for effective detec-

tion. Specifically, Snopy adopts a change-based sample denoising

approach to automatically weed out vulnerability-irrelevant code

elements in the vulnerable functions without sacrificing the label

accuracy. Then, Snopy constructs a novel Causality-Aware Graph

Attention Network (CA-GAT) with Feature Caching Scheme (FCS)

to learn causal vulnerability features while maintaining efficiency.

Experiments on the three public benchmark datasets show that

Snopy outperforms the state-of-the-art baselines by an average of

27.22%, 85.89%, and 75.50% in terms of F1-score, respectively.

*Xiaobing Sun is the corresponding author.
†Yunnan Key Laboratory of Software Engineering, Yunnan, China.
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1 INTRODUCTION

Software vulnerabilities are security-related flaws introduced dur-

ing the design and implementation of the software. Such weak-

nesses could be exploited by a threat actor for a variety of mali-

cious ends [31]. For example, XZ-Utils1, a data-compression library

widely integrated into Linux ecosystem, was recently disclosed to

contain a backdoor (CVE-2024-30942), enabling a remote attacker to

execute arbitrary code. Thus, despite significant efforts to enhance

software reliability in the past few decades, vulnerability detection

remains a classic yet challenging problem.

Due to the high flexibility for analyzing software without run-

ning it, static code analyzers [2, 6, 9, 23] are widely used to hunt

security vulnerabilities hidden in programs. However, state-of-the-

art tools have achieved limited success in realistic scenarios as they

heavily rely on hand-crafted vulnerability specifications and rules,

which are time-consuming and error-prone [40]. Benefiting from the

construction of large-scale vulnerability datasets [10, 20, 46] and

tremendous progresses of Deep Learning (DL) in code understand-

ing, recent years have witnessed an increasing in the popularity of

1https://tukaani.org/xz/
2https://nvd.nist.gov/vuln/detail/CVE-2024-3094
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learning-based vulnerability detection approaches [11, 38, 39, 71].

Compared to conventional Program Analysis (PA)-based solutions,

DL-based approaches can automatically learn implicit vulnerability

patterns from source code without human intervention.

While promising, current neural vulnerability detectors suffer

from severe performance degradation when applied to detect vul-

nerabilities in real-world settings, posing a barrier to adoption [8].

Such poor generalization ability stems from two major challenges:

Challenge 1: Noisy program semantics. Since acquiring a

reliable vulnerability label is a non-trivial task, previous neural

vulnerability detectors [3, 36, 59, 71] primarily extract features from

the entire functions, instead of vulnerability-related code regions.

As a result, DL models will be heavily influenced by the program

semantics of vulnerability-irrelevant code elements (i.e., noise) in

the vulnerable samples. To alleviate this problem, a straightforward

countermeasure is program slicing [60], which prunes irrelevant

statements starting from a Point of Interest (PoI), as recent works

[4, 38, 39] do. Unfortunately, such pre-processing still requires

specialized security expertise (e.g., slicing criteria), and is limited to

specific types of vulnerabilities [63]. Moreover, since a considerable

portion (e.g., accounting for 24.19% in the Big-Vul [20] dataset)

of vulnerabilities are fixed by adding compulsory security checks

without any deletion, existing deletion-based annotation rules (i.e.,

a slice is considered to be vulnerable as long as it covers at least

one vulnerable statement removed in the security patch [11]) may

not work and even introduce additional data quality issues [15].

Challenge 2: Learning spurious correlations. Recent works

[37, 66] pointed out that, both traditional Deep Neural Network

(DNN)-based and emerging Large Language Model (LLM)-based

vulnerability detectors can be easily fooled into flipping their deci-

sions by simple perturbations such as identifier replacement. This

is because DL models tend to pick up dataset nuances (e.g., specific

coding styles) for prediction [56], as opposed to causal vulnerability

features (e.g., potential root causes and manifestation points) [43].

To cut off the correlations between spurious features and model

outputs, state-of-the-art approaches either retrain detection models

on obfuscated program variants [7] or ignore the spurious features

during the inference phase [50]. For example, Rahman et al. [50]

assumed variable and API names can be abused as spurious features,

and prevented them from participating in decision-making. Nev-

ertheless, current solutions focus on enhancing the robustness of

detection models against target samples with spurious features, in-

stead of capturing real vulnerability patterns, resulting in marginal

performance improvements.

Our Work. Based on the above discussion, an important question

arises as “how to capture real vulnerability patterns from vulnerable

samples with numerous noise for effective detection?” In response,

we propose Snopy, a novel DL-based approach, which combines

Sample deNOising with causal graPh learning for effective vul-

nerabilitY detection. The key insights underlying our approach

include (�) patch modifications aim to sanitize or interrupt vulner-

able program behaviors, and naturally can be utilized as explicit

expert knowledge to localize vulnerability-related code regions, as

well as (�) the relationships between causal vulnerability features

and prediction labels should be invariant, regardless of changes in

spurious parts. Specifically, to solve the first issue, inspired by that

Vulnerability-Fixing Commits (VFCs) are the most common source

of current vulnerability datasets [16], Snopy adopts a change-based

sample denoising approach to automatically weed out vulnerability-

irrelevant code elements in the vulnerable functions without sac-

rificing the label accuracy. To address the second issue, Snopy

constructs a Causality-Aware Graph Attention Network (CA-GAT)

to approximately disentangle causal and spurious features from vul-

nerable samples based on attention mechanism [58], and maximize

the causal effect of real vulnerability patterns on predicting labels

while ignoring the spurious parts. In addition, given the diversity

of spurious features in practice, CA-GAT incorporates a novel Fea-

ture Caching Scheme (FCS) to reuse previously identified spurious

features without significantly raising memory consumption.

Evaluation. We implement a prototype system of Snopy, and

conduct comparative experiments with nine prior DL-based vul-

nerability detection approaches [8, 11, 24, 36, 38, 39, 45, 61, 71] on

the three well-regarded VFC-based benchmark datasets, including

FFmpeg+QEMU [71], Big-Vul [20], and DiverseVul [10]. Experi-

mental results show that Snopy outperforms the state-of-the-art

baselines with respect to F1-score. In particular, compared to the

best-performing baseline SVulD [45], Snopy achieves 2.35%, 13.20%,

and 6.72% relative improvements on the three datasets, respectively.

In addition, when applied to detect different types of vulnerabilities,

Snopy produces substantial improvements of up to 21.80% in terms

of F1-score on average than SVulD.

Contributions. This paper makes the following contributions:

• We propose a novel DL-based approach, Snopy3, which bridges

sample denoising with causal graph learning to capture real

vulnerability patterns from vulnerable samples with numerous

noise for effective detection.

• We propose a novel Causality-Aware Graph Attention Network

(CA-GAT) with Feature Caching Scheme (FCS) to learn causal

vulnerability features while maintaining efficiency.

• We evaluate Snopy against nine existing DL-based vulnerabil-

ity detection approaches on the three large-scale benchmark

datasets. The extensive experiment results indicate that Snopy

outperforms the state-of-the-art baselines.

Paper Organization. The remainder of this paper is organized as

follows. Section 2 introduces the background knowledge related to

our problem, and discusses the limitations of existing solutions. Sec-

tion 3 describes the details about our approach. Section 4 presents

the experimental setup, followed by the evaluation results in Sec-

tion 5. Section 6 discusses the possible threats to validity. Section

7 reviews the related work. Section 8 summarizes this paper and

outlines our future research agenda.

2 BACKGROUND AND MOTIVATION

2.1 Background

Vulnerability-Fixing Commits (VFCs), also known as Security

Patches [34], are code changes that correct the vulnerabilities that

already exist in repositories. They are commonly released to the

public through official channels or vulnerability advisories, such as

Common Vulnerabilities and Exposures (CVE) [13] and National

Vulnerability Database (NVD) [44], for security management.

3https://github.com/SnopyArtifact/Snopy
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Figure 1: Structural causal model for DL-based vulnerability

detection.

Vulnerability-Contributing Commits (VCCs) are code changes

in which the vulnerable lines of code were firstly added [42]. A

straightforward way to identify VCCs is SZZ algorithm [52], which

assumes that the lines of code deleted by the VFCs are the same as

or evolved from the lines of code added by the VCCs.

Structural Causal Model (SCM) [49] is a directed acyclic graph

that describes causal relationships between different variables. If a

variable 𝐵 depends on 𝐴 to determine its value, the variable 𝐴 is a

cause of 𝐵 and the arrow 𝐴 → 𝐵 indicates the causal relationship.

Figure 1 presents the causalities among four variables in the context

of DL-based vulnerability detection, in which the variable𝐶 denotes

the causal feature that truly reflects the intrinsic property of a

vulnerability while the variable 𝑆 represents the spurious feature

which is usually caused by the data biases (e.g., specific coding

styles). Based on the feature representation of a target function 𝐹 ,
the neural vulnerability detector extracts the discriminative part to

produce a prediction label 𝑌 (1 for vulnerable and 0 otherwise).

Scrutinizing this causal graph, we can recognize a backdoor path

𝐹 → 𝑆 → 𝑌 between the target function 𝐹 and its prediction

label 𝑌 , wherein the spurious feature 𝑆 plays a confounder role

that establishes the statistical (but not causal) correlation which

only exists in training but not in testing. As a result, the deployed

detection model may suffer from serious performance degradation

once the testing data distribution shifts from the original training

data. To eliminate the backdoor path, a promising solution is causal

intervention [49], which pairs each causal feature with various

types of spurious features that appear in the dataset and promotes

invariant relationships between causal features and predictions,

regardless of changes in spurious parts.

2.2 Motivating Example

To illustrate the limitations of existing neural vulnerability detectors

and motivate the key insight of our approach, we use a real-world

vulnerability CVE-2018-95184 as a running example.

Figure 2 exemplifies the fixing commit of this vulnerability. Since

the data type of tlv_len is u8 (i.e., unsigned char), there exists out-

of-bounds write when uri_len is allocated to it (line 15) without

bounds checking. This issue could lead to local escalation of privi-

lege, allowing an attacker to cause a denial of service (system crash)

or possibly execute arbitrary code. To fix this vulnerability, devel-

opers perform compulsory security checks (lines 10-11) to limit the

size of uri_len to avoid writing past the end of the allocated buffer.
Benefiting from the superior capability to automatically extract fea-

tures from source code, DL techniques have emerged as promising

solutions for vulnerability detection [8, 24, 71]. However, as shown

4https://nvd.nist.gov/vuln/detail/CVE-2018-9518

Statement-Level Semantics

Token-Level Semantics

1  diff --git a/net/nfc/llcp_commands.c b/net/nfc/llcp_commands.c
2  index 367d8c0..2ceefa1 100644
3  --- a/net/nfc/llcp_commands.c
4  +++ b/net/nfc/llcp_commands.c
5  @@ -149,6 +149,10 @@ struct nfc_llcp_sdp_tlv 
6                       *nfc_llcp_build_sdreq_tlv(u8 tid, char *uri,

                             size_t uri_len)
7  {
8 struct nfc_llcp_sdp_tlv *sdreq;
9 pr_debug("uri: %s, len: %zu\n", uri, uri_len);
10 +   if (WARN_ON_ONCE(uri_len > U8_MAX - 4))
11 +           return NULL;
12 sdreq = kzalloc(sizeof(struct nfc_llcp_sdp_tlv), GFP_KERNEL);
13 if (sdreq == NULL)
14 return NULL;
15 sdreq->tlv_len = uri_len + 3;
16 if (uri[uri_len - 1] == 0)
17 sdreq->tlv_len--;
18 sdreq->tlv = kzalloc(sdreq->tlv_len + 1, GFP_KERNEL);
19 if (sdreq->tlv == NULL) {
20 kfree(sdreq);
21 return NULL;
22 }
23 sdreq->tlv[0] = LLCP_TLV_SDREQ;
24 sdreq->tlv[1] = sdreq->tlv_len - 2;
25 sdreq->tlv[2] = tid;
26 sdreq->tid = tid;
27 sdreq->uri = sdreq->tlv + 3;
28 memcpy(sdreq->uri, uri, uri_len);
29 sdreq->time = jiffies;
30 INIT_HLIST_NODE(&sdreq->node);
31 return sdreq;
32 }

Vulnerability-Fixing Commit (fe9c8426) of CVE-2018-9518

Figure 2: A motivating example from Linux Kernel.

in this case, the core logic of a vulnerability generally involves only

a few statements, while the whole function contains dozens (mostly

hundreds) of lines of code. As a result, these program semantics

of vulnerability-irrelevant code elements (i.e., noise) will heavily

influence the DL model.

To mitigate the noise problem, an intuitive way is to perform

program slicing [60] from vulnerability-prone program points of

interest (e.g., sensitive APIs, pointer usage) to prune irrelevant

statements [4, 38, 39, 63]. For example, DeepWukong [11] per-

formed forward and backward control- and data-flow slicing based

on system API calls and arithmetic operators to extract graph slices

for feature extraction. As shown in Figure 2, starting from the

yellow-shaded expression statement sdreq->tlv_len = uri_len +
3 (i.e., a vulnerability-triggering statement at line 15), we can obtain

a set of vulnerability-related contexts (purple-shaded) with data-

dependencies (red arrow) by traversing the Program Dependence

Graph (PDG) [22]. Despite their effectiveness, such pre-processing

relies heavily on the expertise of the developers performing the

analysis, and the knowledge (e.g., sources and sinks) of existing vul-

nerabilities. What’s worse, according to their annotation rules (i.e.,

statements removed from the patched function are vulnerability-

related), the code slice (yellow- and purple-shaded statements) in

our motivating example will be mislabeled as benign because it

does not contain any deletion. According to our statistical analy-

sis on the widely-used vulnerability dataset Big-Vul [20], 24.19%

vulnerable samples are fixed only with additions. This observation

reveals the challenge slicing-based solutions may face in practice.

Another common approach is model-centric, which guides the

DL model to autonomously learn the critical aspects (i.e., code el-

ements of high importance) of the input sample without human
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Figure 3: Workflow of Snopy.

intervention. For instance, by employing the edge-aware atten-

tion module as well as a kernel-scaled convolutional layer, AMPLE

[61] estimated the importance of each edge and node and cor-

rectly identified this motivating example as vulnerable. However,

recent works [7, 50] have revealed that both state-of-the-art DNN-

and LLM-based approaches tend to rely on non-causal features as

shortcuts to make predictions. Thus, we further calculate the node

importance to locate the Top-5 important statements (an acceptable

threshold on manual inspection [24, 36]) likely to be vulnerable. Un-

fortunately, neither the vulnerability-triggering statement (line 15)

nor its corresponding contexts (purple-shaded fragments in Figure

2) are captured by AMPLE for prediction. To alleviate the problem,

CausalVul [50] assumed variable and API names can be abused

as spurious features, and prevented models from using them for

prediction. However, crafting hundreds of variants to test various

spurious features that can occur in code is not practical, and the

contextual semantics of variable names (e.g., uri_len) are beneficial
to identifying the potential buffer overflow in this case.

Our Idea. In summary, current neural vulnerability detectors (�)

struggle to focus on vulnerability-related parts code elements, and

(�) tend to exploit spurious correlations for prediction, thus under-

mining their effectiveness in practice. Naturally, we ask the ques-

tion, “how to capture real vulnerability patterns from vulnerable sam-

ples with numerous noise for effective detection?” For this example,

the statements added by the VFC pinpoint the vulnerability-related

variable uri_len (line 10). Such explicit expert knowledge can serve

as the slicing criterion that enables us to weed out vulnerability-

irrelevant parts of vulnerable functions while ensuring the label

accuracy. As for the spurious correlation issue, we can leverage

the attention mechanism [58] to approximately disentangle causal

and spurious features on representation-level, and maximize the

causal effect of real vulnerability patterns on predicting labels while

ignoring the spurious parts.

3 METHODOLOGY

3.1 Overview of Snopy

Figure 3 illustrates the overall workflow of Snopy. The key techni-

cal contributions of Snopy include: (�) sample denoising, which

weeds out the vulnerability-irrelevant parts of vulnerable functions

for representation, and (�) causal graph learning, which captures

real vulnerability patterns for prediction. In the deployment phase,

Snopy works like a typical neural vulnerability detector [8, 36, 71]

to discover vulnerabilities at the function-level. We present the

details of Snopy in the following subsections.

Selective 
Context  Slicing

Essential 
Line Localization

Purified 
Sample Generation

Selective 
Context  Slicing

Essential 
Line Localization

Purified 
Sample Generation

Step 2: Noise CleansingStep 1: Vulnerability Tracing 

Vulnerability-
Fixing Commits

V-SZZ

Vulnerability-
Contributing Commits

Induced 
Vulnerable Function

Disclosed 
Vulnerable Function

Patched 
Function

Purified
Vulnerable Function

Figure 4: Overview of sample denoising.

3.2 Sample Denoising

Asmentioned before, feeding the entire vulnerable function into the

DL model will inevitably introduce a large amount of vulnerability-

irrelevant code elements that form noise, while extracting finer-

grained program slices may suffer from imprecise labeling strategy

and expensive expertise. Motivated by the fact that current vulnera-

bility datasets [10, 20, 46] primarily collect vulnerable samples from

Vulnerability-Fixing Commits (VFCs), we propose a change-based

sample denoising strategy, which conducts noise cleansing based on

the modifications between vulnerable functions and corresponding

patched versions to automatically weed out the noise information

in the vulnerable functions, as shown in Figure 4.

3.2.1 Vulnerability Tracing. We first execute the git reset com-

mand to exactly roll back the source code to the point before and

after applying the patch based on the commit ID provided by the

vulnerability dataset. Then, we localize all functions involving code

revisions and their scopes according to the line numbers of changed

code in the VFC’s header lines starting with ––- and +++ (e.g., lines 3-
4 in Figure 2), and obtain the vulnerable and corresponding patched

functions in pre- and post-commit versions via the ctage5 parser.
In addition, considering that a VFC may also contain vulnerability-

irrelevant non-essential changes [32] (e.g., variable renaming, cas-

caded adaptations), we further leverage the state-of-the-art V-SZZ

algorithm [1] to collect Vulnerability-Contributing Commits (VCCs)

as references to (�) confirm truly vulnerable statements, and (�)

narrow the search space for vulnerability-related contexts in the

later noise cleansing phase. Our intuition is that vulnerability se-

mantics persist and propagate across multiple versions (from the

vulnerability introduction to the vulnerability patch) of the vulner-

able functions, regardless of other internal modifications which are

often benign [42]. For clarity, we refer to the vulnerable function

that is identified from the VFC as the disclosed vulnerable func-

tion, and the vulnerable function that is identified from the VCC

as the induced vulnerable function.

Specifically, V-SZZ first performs code similarity checking based

on the edit distance to map the deleted line (annotated by the VFC)

5https://ctags.io/
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Vulnerability-Fixing Commit (b19d8143)

Statement-Level Semantics

Token-Level Semantics

1   index 9e6ab01..ca74f67 100644
2   --- a/ssl/s3_srvr.c    +++ b/ssl/s3_srvr.c
3   @@ -2251,10 +2251,17 @@ int ssl3_get_client_key_exchange(..)
4   if (alg_k & (SSL_kEDH | SSL_kDHr | SSL_kDHd)) {
5       int idx = -1;
6       EVP_PKEY *skey = NULL;
7  -    if (n)
8  +    if (n > 1) {
9             n2s(p, i);
10 -    else
11 +    } else {
12 +          if (alg_k & SSL_kDHE) {
13 +              al = SSL_AD_HANDSHAKE_FAILURE;
14 +              SSLerr(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE,
15 +                   SSL_R_DH_PUBLIC_VALUE_LENGTH_IS_WRONG);
16 +              goto f_err;
17 +          }
18            i = 0;
19 +    }
20      if (n && n != i + 2) {

1   index bcde8f2..0c35d19 100644
2   --- a/ssl/s3_srvr.c    +++ b/ssl/s3_srvr.c
3   @@ -2255,8 +2256,11 @@ int ssl3_get_client_key_exchange(..)
4   if (alg_k & (SSL_kEDH | SSL_kDHr | SSL_kDHd)) {
5  -    n2s(p, i);
6  -    if (n != i + 2) {
7  +    int idx = -1;
8  +    EVP_PKEY *skey = NULL;
9  +    if (n)
10 +          n2s(p, i);
11 +    if (n && n != i + 2)
12            {

Vulnerability-Contributing Commit (c523eb98)

Figure 5: A working example from OpenSSL.

in the disclosed vulnerable function to the line in the previous ver-

sion. Then, it executes the git blame command to trace all previous

commits that touched the code changes in VFCs, and considers the

earliest one as the VCC. Based on these retrieved VCCs, we repeat

the previously procedure to extract the induced versions of dis-

closed vulnerable functions. The only difference lies in that the

induced vulnerable function is extracted from the post-commit

version, rather than the pre-commit version.

3.2.2 Noise Cleansing. Given a 3-tuple of a vulnerability, i.e., the

induced vulnerable function 𝑓𝑖 , the disclosed vulnerable function

𝑓𝑑 , and the patched function 𝑓𝑝 , Snopy conducts noise cleansing to

extract the vulnerability-related part. Generally, an ideal vulnerable

sample should only cover (�) essential vulnerable lines revealing

how a vulnerability is caused, and (�) contextual statements re-

flecting the environment where the vulnerability manifests.

Essential Line Localization. Following prior works [62, 64], es-

sential vulnerable lines 𝐸𝑣𝑢𝑙 are statements 𝑠𝑡 removed from 𝑓𝑝 but

included in 𝑓𝑖 and 𝑓𝑑 , and are formally defined as:

𝐸𝑣𝑢𝑙 = {𝑠𝑡 | (𝑠𝑡 ∈ (𝑓𝑑 \ 𝑓𝑝 )) ∧ (𝑠𝑡 ∈ (𝑓𝑖 ∩ 𝑓𝑑 ))} (1)

Considering that 𝑓𝑖 and 𝐸𝑣𝑢𝑙 are not available when a vulnera-

bility is fixed purely with additions (e.g., the motivating example in

Figure 2), we further identify essential patch lines 𝐸𝑝𝑎𝑡𝑐ℎ that are

added in 𝑓𝑝 but do not exist in 𝑓𝑑 :

𝐸𝑝𝑎𝑡𝑐ℎ = {𝑠𝑡 | (𝑠𝑡 ∈ (𝑓𝑝 \ 𝑓𝑑 ))} (2)

Selective Context Slicing. To precisely extract contextual state-

ments 𝐸𝑐𝑜𝑛 which have a major impact on vulnerability manifesta-

tion, we perform selective program slicing on 𝑓𝑑 , which can be in

two directions: backward and forward slicing.

• Backward slicing aims to localize the statements that have

dependencies with essential vulnerable lines 𝐸𝑣𝑢𝑙 (or essential
patch lines 𝐸𝑝𝑎𝑡𝑐ℎ if 𝐸𝑣𝑢𝑙 is not available). Like normal backward

slicing, we preserve all statements that have influence on 𝐸𝑣𝑢𝑙
(/𝐸𝑝𝑎𝑡𝑐ℎ) with respect to data- and control- dependencies.

• Forward slicing is to find statements affected by the vulnera-

bility. Since taking all the subsequent statements into account

will cover too many irrelevant statements [39, 64], we perform

(�) forward data-flow slicing as target statements receive vari-

ables/parameters assigned or checked by 𝐸𝑣𝑢𝑙 (/𝐸𝑝𝑎𝑡𝑐ℎ), and (�)

forward control-flow slicing only if the result of previous data-

flow slicing is empty.

As a working example, let us consider CVE-2015-17876, an im-

proper input validation vulnerability discovered in OpenSSL. Figure
5 shows its VFC (top) and VCC (bottom). Among the red-shaded

statements deleted from 𝑓𝑑 , only the yellow-shaded statement if
(n) (i.e., line 7 in 𝑓𝑑 and line 9 in 𝑓𝑖 ) belongs to 𝐸𝑣𝑢𝑙 . By performing

the selective contextual statement slicing from 𝐸𝑣𝑢𝑙 , statements that

have backward control- and data-dependencies (i.e., lines 4-6 in 𝑓𝑑 )
and forward data-dependencies (i.e., line 20 in 𝑓𝑑 ) are included in

𝐸𝑐𝑜𝑛 .
Purified Sample Generation. After backward and forward pro-

gram slicing, all essential vulnerable lines 𝐸𝑣𝑢𝑙 (if any) and the

corresponding sliced contextual statements 𝐸𝑐𝑜𝑛 are retained to

generate the purified version of the disclosed vulnerable function

𝑓𝑑 . These purified vulnerable functions will be fed along with be-

nign samples into the DL model for training. It is noteworthy that

sample denoising is only applied in the training phase because the

VFC for a vulnerability is not available before it is detected.

3.3 Causal Graph Learning

To encourage the detection model to leverage real vulnerability

patterns for prediction, we propose a novel Causality-Aware Graph

Attention Network (CA-GAT), with detailed architecture presented

in Figure 6. The CA-GAT consists of two main components: (�) the

feature extraction module for learning precise code representations;

and (�) the causal intervention module which promotes invariant

relationships between causal feature and model outputs, regardless

of changes in spurious parts.

3.3.1 Feature Extraction. The feature extraction process is divided

into two parts: embedding initialization and message propagation.

Embedding Initialization. Following [8, 61, 71], we reason about

vulnerability patterns based on Code Property Graph (CPG) [65], a

popular data structure which offers rich syntactic and semantic in-

formation of source code. Formally, a CPG is denoted asG = (V, E),
where V and E represent the set of nodes and edges, respectively.

Each node 𝑣 ∈ V is initialized as a𝑚-dimensional feature vector

𝒉(0)𝑣 ∈ R𝑚 by the pre-trained CodeBERT [21] model.

Message Propagation. To explicitly incorporate graph-structured

contextual semantics into the representations of CPG nodes, we

6https://nvd.nist.gov/vuln/detail/CVE-2015-1787
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Figure 6: Illustration of our proposed Causality-Aware Graph

Attention Network (CA-GAT).

employ a tailored message propagation mechanism [41] to update

node features throughout graphs. To be specific, the embedding

𝒉(𝑡 )𝑣 of node 𝑣 at time step 𝑡 ≤ 𝑇 is updated by:

𝒉(𝑡 )𝑣 = LeakyReLU
(
𝑾 (𝑡 ) (𝒉(𝑡−1)𝑣 | |𝒉(𝑡−1)

N(𝑣)
)
)

(3)

where𝑾 (𝑡 ) is a learnable transformation matrix at 𝑡-th iteration.

| | denotes the concatenation operator. N(𝑣) represents the 1-hop

neighbors of node 𝑣 . 𝒉(𝑡−1)
N(𝑣)

is the neural information propagated

from N(𝑣) to node 𝑣 at previous time step:

𝒉(𝑡−1)
N(𝑣)

=
∑

𝑢∈N(𝑣)

𝛾𝑢,𝑣𝒉
(𝑡−1)
𝑗 (4)

where 𝛾𝑢,𝑣 is a decay factor that specifies how much information

is passed from node 𝑢 to node 𝑣 along with the edge 𝑢 → 𝑣 , and is

formally designed as:

𝛾𝑢,𝑣 =
1√

|N (𝑢) | |N (𝑣) |
(5)

where |N (𝑢) | and |N (𝑣) | denote the number of 1-hop neighbors

for node 𝑢 and node 𝑣 , respectively.
The above message propagation procedure iterates over 𝑇 time

steps, and the final node representation matrix is 𝑿 ∈ R |V |×𝑚 , in

which 𝒉(𝑇 )𝑣 = 𝑿 [𝑣, :].

3.3.2 Causal Intervention. To promote the detection model learn-

ing real vulnerability patterns, we propose a novel causal interven-

tion module with Feature Caching Scheme (FCS).

Specifically, Given an encoded CPG G with the adjacency matrix

𝑨 ∈ {0, 1} |V |× |V | and node representation matrix 𝑿 , we first

employ two Multi-Layer Perceptrons (MLP) [57] to calculate node-

level and edge-level attention scores as follows:

𝛼𝑐𝑣 , 𝛼𝑠𝑣 = softmax
(
MLPnode (𝒉𝑣)

)
(6)

𝛽𝑐𝑣𝑢 , 𝛽𝑠𝑣𝑢 = softmax
(
MLPedge (𝒉𝑣 | |𝒉𝑢 )

)
(7)

where 𝛼𝑐𝑣 (/𝛽𝑐𝑣𝑢 ) represents the node (/edge)-level attention score

for node 𝑣 (/edge 𝑣 → 𝑢) in the sub-graph containing causal features
(hereafter, causal sub-graph G𝑐 ) of graph G. Similarly, 𝛼𝑠𝑣 and

𝛽𝑠𝑣𝑢 are for spurious sub-graph G𝑠 . Note that 𝛼𝑐𝑣 + 𝛼𝑠𝑣 = 1, and

𝛽𝑐𝑣𝑢 + 𝛽𝑠𝑣𝑢 = 1.

Based on the node-level and edge-level attention scores, we can

decompose the original CPG G into the initial causal sub-graph G𝑐

and spurious sub-graph G𝑠 , and produce graph-level representa-

tions for them:

𝒉G𝑐
= 𝜑

(
GPL(𝑨 � 𝑴𝑐 ,𝑿 � 𝑭𝑐 )

)
(8)

𝒉G𝑠
= 𝜑

(
GPL(𝑨 � 𝑴𝑠 ,𝑿 � 𝑭 𝑠 )

)
(9)

where 𝜑 (·) and GPL(·) represent the graph mean readout layer and

pooling layer , respectively. � denotes element-wise multiplication.

𝑴𝑐 ∈ {0, 1} |V |×|V | and 𝑭𝑐 ∈ {0, 1} |V |×𝑚 represent the edge mask

and feature mask for the causal sub-graph G𝑐 . Analogously, 𝑴𝑠

and 𝑭 𝑠 are for the spurious sub-graph G𝑠 .

Having obtained the representations of the causal sub-graph

G𝑐 and spurious sub-graph G𝑠 , we would like the detection model

being able to disentangle them during training process for better

predictions. To do so, we employ the standard cross-entropy loss

over the training samplesD to ensure the correctness of predictions

based on causal features:

L𝐶𝐸 = −
1

|D|

∑
G∈D

𝒚�G log
(
Φ(𝒉G𝑐

)
)

(10)

where Φ(·) is the MLP-based classifier with softmax function.

For spurious features, we push their predictions evenly to binary

labels (i.e., vulnerable or benign) since they are unnecessary for

classification [55]:

L𝑢𝑛𝑖 𝑓 =
1

|D|

∑
G∈D

KL
(
𝒚𝑢𝑛𝑖 𝑓 ,Φ(𝒉G𝑠

)
)

(11)

where KL denotes the KL-Divergence.𝒚𝑢𝑛𝑖 𝑓 represents the uniform

prior distribution.

As discussed in Section 2, causal intervention requires pairing

the target causal feature per sample with various types of spuri-

ous features that appear in the dataset. For example, Ganz et al.

[25] conditioned the causal sub-graph per sample with all possible

spurious sub-graphs obtained during training. However, blindly

traversing all possible spurious features (e.g., increasing the batch

size) is unrealistic because any attribute of the input dataset that

exhibits statistical correlation with the target label can be abused.

To address this challenge, we propose a novel Feature Caching

Scheme (FCS) to reuse previously identified spurious features. In

each training epoch, we feed more data into the batch size (i.e., 𝑁
times the batch size) and store spurious features 𝒉G𝑠′

into the cache

space B = {𝒉G𝑠′
→ 𝒃𝑖 }. In the intervention stage, we combine

causal features with various spurious features in B, and maximize

the causal effect of real vulnerability patterns on predicting labels,

regardless of changes in spurious parts:

L𝑐𝑎𝑢 = −
1

|D| · |S|

∑
G∈D

∑

𝑠′ ∈S

𝒚�G log
(
Φ(𝒉G𝑐

⊕ 𝒉G𝑠′
)
)

(12)

where S is the set of reusable spurious features appearing in the

training data D. ⊕ denotes the random combination operation.
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Table 1: Statistics of the studied datasets

Dataset Vul Non-vul Ratio VFCs VCCs

FFmpeg+QEMU 12,460 14,858 1:1.2 6,611 6,439

Big-Vul 10,900 177,736 1:16.3 3,754 3,385

DiverseVul 18,945 311,547 1:16.4 7,514 7,022

Finally, the total training loss is defined as:

L𝑡𝑜𝑡𝑎𝑙 = L𝐶𝐸 + 𝜆1L𝑢𝑛𝑖 𝑓 + 𝜆2L𝑐𝑎𝑢 (13)

where 𝜆1 and 𝜆2 are two weight coefficients indicating the strength

of feature disentanglement and causal intervention, respectively.

4 EXPERIMENTS

4.1 Research Questions

Our work seeks to answer three Research Questions (RQs):

• RQ1: How does Snopy perform compared to the state-of-

the-art baselines on vulnerability detection? By investigat-

ing this RQ, we aim to answer whether and to what extent can

Snopy outperform the state-of-the-art baselines in practice.

• RQ2:How effective is Snopy for detecting different types of

vulnerabilities? Current approaches primarily build a general-

purpose model that can detect all vulnerabilities. Considering

the characteristics and severity of different vulnerability types

vary, we are interested to evaluate the detection performance of

Snopy across different types of vulnerabilities.

• RQ3: How do various components of Snopy affect its over-

all performance? We perform two set of ablation studies to

understand how different design choices, including the sample

denoising (Section 3.2) and the causal graph learning (Section

3.3), impact the effectiveness of Snopy.

4.2 Datasets

We chose benchmark datasets that satisfied the following criteria.

First, they should be widely adopted by state-of-the-art baselines so

that we can establish a fair comparison with them. Second, they are

built upon VFCs since Snopy is designed to utilize VFCs and VCCs

to purify vulnerable code samples. Third, they include real-world

vulnerabilities disclosed in diverse projects so that the generaliza-

tion performance of approaches can be evaluated.

Based on the above criteria, we selected three popular datasets,

including FFmpeg+QEMU [71], Big-Vul [20], and DiverseVul [10].

• FFmpeg+QEMU [71] collected security-related commits via key-

words matching, and manually labeled the pre-commit function

in a VFC (/non-VFC) as vulnerable (/benign).

• Big-Vul [20] gathered vulnerabilities from VFCs linked to CVE.

Unlike FFmpeg+QEMU, Big-Vul labeled the pre-commit version

of a changed function to be vulnerable, and the post-commit

version to be benign.

• DiverseVul [10] crawled security issues to identify VFCs and

extracted changed files based on relevant git commit URLs. It

followed the same labeling strategy as the Big-Vul dataset.

The data statistics are shown in Table 1. Column 2 and Column 3

are the number of vulnerable and non-vulnerable functions, respec-

tively. Column 4 denotes the ratio of vulnerable functions in each

dataset. Column 5 presents the number of VFCs contained in each

dataset. Column 6 reports the number of VCCs we collected from

these VFCs by employing the V-SZZ algorithm. It is noteworthy

that we exclude VCCs across functions (i.e., the induced vulnerable

function that has an inconsistent function name as its disclosed/-

patched version) since Snopy performs sample denoising based on

code changes in VFCs and their corresponding VCCs.

4.3 Baselines

To evaluate our approach, we compared Snopy with nine state-of-

the-art baselines, including seven DNN-based approaches [8, 11, 36,

38, 39, 61, 71] and two LLM-based approaches [24, 45].

• DNN-based Approaches. VulDeePecker [39] and SySeVR [38]

utilized BiLSTM to extract vulnerability semantics from program

slices. Devign [71], ReVeal [8], IVDetect [36], DeepWukong

[11], and AMPLE [61] employed various graph neural networks

to learn structural vulnerability features from code graphs.

• LLM-based Approaches. LineVul [24] employed a BERT archi-

tecture with self-attention layers to learn vulnerability seman-

tics. SVulD [45] combined the strengths of pre-trained semantic

embedding and contrastive learning to capture semantic repre-

sentations of functions.

4.4 Experimental Setting

Implementation details.We implement Snopy in Python using

PyTorch [48]. Our experiments are performed on a Linux work-

station with an Intel(R) Core(TM) i9-12900k @3.90GHz, 128GB

RAM, and an NVIDIA GeForce RTX 3090 GPU with 24GB mem-

ory, running Ubuntu 18.04.4 LTS with CUDA 10.1. We employ a

robust parser Joern [65] for CPG generation. Our CA-GAT model

is trained in a batch-wise fashion until convergence and the batch

size is set to 128. The number of propagation iterations𝑇 is set to 4.

To mitigate the overfitting problem, we employ dropout [53] with

a dropping ratio of 0.1. ADAM [33] optimizer is used to train the

model with a learning rate of 1𝑒-2. The hyper-parameters are tuned

through grid search. In light of the best performance, we report

experimental results in a setting with the loss coefficients 𝜆1 and 𝜆2
as 0.6 and 0.5, and the capacity 𝑁 of FCS as 6 on the three datasets.

Evaluationmetrics. Following prior studies [8, 39, 71], we employ

four widely-used binary classification metrics, including Accuracy,

Precision, Recall, and F1-score, for evaluation. Accuracy evaluates

the overall performance of classifiers. Precision refers to the ratio

of truly vulnerable samples among the detected ones, while Recall

measures the percentage of vulnerabilities that are retrieved out of

all vulnerable instances. F1-score is the harmonic mean of Recall

and Precision, and calculated as: 2 × 𝑅𝑒𝑐𝑎𝑙𝑙×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 .

5 EXPERIMENTAL RESULTS

5.1 RQ1: Detection Performance

Experiment Setup.We evaluate the nine aforementioned baselines

(described in Section 4.3) and our proposed Snopy on the three

studied benchmark datasets (described in Section 4.2). We randomly
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Table 2: Comparison results between Snopy and state-of-the-art baselines on the three datasets

Metrics (%)
Dataset

FFmpeg+QEMU [8] Big-Vul [20] DiverseVul [10]

Approach Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1

VulDeePecker 48.55 33.96 27.47 30.37 83.27 16.56 22.95 19.24 87.44 11.30 24.55 15.48
SySeVR 44.63 35.70 61.87 45.28 82.45 19.63 28.91 23.38 86.16 7.69 14.28 10.00
Devign 51.37 48.15 80.42 60.24 85.64 27.32 13.04 17.65 87.16 24.49 28.07 26.16
ReVeal 53.05 54.19 75.32 63.03 83.79 15.34 30.05 20.31 85.32 20.69 33.19 25.49
IVDetect 56.85 51.33 68.82 58.80 86.97 24.96 32.57 28.26 88.52 17.34 35.26 23.25
DeepWukong 54.61 52.70 71.96 60.84 79.64 13.08 32.55 18.66 82.39 21.64 29.30 24.89
AMPLE 62.88 55.06 77.34 64.33 85.95 28.40 36.11 31.79 88.79 26.35 34.01 29.69
LineVul 63.74 52.44 65.39 58.21 80.26 12.96 38.32 19.37 90.52 36.18 26.98 30.91
SVulD 60.51 54.99 83.48 66.30 92.81 33.24 41.65 36.97 91.16 31.44 40.17 35.27

Snopy 67.33 59.64 78.72 67.86 90.75 38.12 46.39 41.85 89.61 33.76 42.53 37.64

split the benchmark dataset into 80%, 10%, and 10% for training,

validation, and testing. For each subset, we keep the distribution as

same as the original ones to align with the real-world setting.

Results. Table 2 presents the performance comparisons between

Snopy and state-of-the-art baselines on the three datasets regard-

ing the four metrics (12 combination cases altogether), with the

best results highlighted in bold. Overall, Snopy achieves the best

performance in the majority (8 out of 12) of cases. In particular,

Snopy outperforms all of the nine referred DNN-based and LLM-

based approaches on the FFmpeg+QEMU, Big-Vul, and Diverse-

Vul dataset by an average of 27.22%, 85.89%, and 75.50% in terms

of F1-score, respectively. Moreover, we observe that SVulD per-

forms better than all other baselines, although it neither focuses

on vulnerability-prone code snippets like slice-level approaches

[38, 39], nor explicitly utilizes the structural information of code

like graph-based models [8, 11, 71]. This indicates the potential of

LLM-based solutions in vulnerability detection as the size of the

training set continues to expand. In contrast, our proposed Snopy

consistently achieves the best performance on the three datasets

in terms of F1-score, outperforming SVulD by 2.35%, 13.20%, and

6.72%, respectively. Such improvements demonstrate that Snopy

strikes a better balance between reporting more vulnerabilities and

reducing false positive rates.

Answer to RQ1: The performance improvements of Snopy

over the state-of-the-art approaches are positive. Particularly,

Snopy outperforms the best-performing baseline SVulD by 2.35%,

13.20%, and 6.72% in F1-score on the three datasets, respectively.

5.2 RQ2: Classification Performance

Experiment Setup. Common Weakness Enumeration (CWE) [14]

provides a list of common software and hardware weakness types

developed and maintained by security community. In particular, we

focus on the Top-25 most dangerous CWEs because they are often

easy to find and exploit, and should be prioritized for remediation.

Here, we evaluate our Snopy and the best-performing baseline

SVulD on two vulnerability datasets with CWE information, Big-

Vul and DiverseVul. Minor types of vulnerabilities (i.e., sample size

less than 100) are excluded to avoid the under-fitting issue due to

insufficient training samples. Finally, 8 types of vulnerabilities in the

Big-Vul dataset and 12 types of vulnerabilities in the DiverseVul

Table 3: The F1-score of our Snopy and baselines for the Top-

25 most dangerous CWEs in Big-Vul and DiverseVul

Dataset Rank Type Ratio SVulD Snopy

B
ig
-V
u
l

1 CWE-787 2.25% 69.44 73.89
4 CWE-416 3.76% 54.71 68.32
6 CWE-20 13.62% 62.99 61.43
7 CWE-125 7.12% 56.38 69.47
12 CWE-476 2.45% 37.59 75.23
14 CWE-190 3.50% 68.53 72.06
17 CWE-119 24.22% 45.77 69.28
21 CWE-362 3.17% 60.28 65.33

Average 56.96 69.38

D
iv
er
se
V
u
l

1 CWE-787 17.98% 60.47 56.99
4 CWE-416 6.24% 53.58 66.29
6 CWE-20 8.16% 44.39 55.83
7 CWE-125 11.60% 49.51 62.30
8 CWE-22 1.25% 33.65 26.74
12 CWE-476 6.05% 22.01 58.14
13 CWE-287 0.67% 8.24 13.59
14 CWE-190 4.86% 61.77 48.25
17 CWE-119 10.14% 56.74 64.82
21 CWE-362 2.84% 38.13 55.94
22 CWE-269 1.22% 6.99 13.34
23 CWE-94 0.87% 11.37 17.55

Average 37.24 44.98

dataset are covered in our experiment. The first four columns of

Table 3 summarize their descriptive statistics. In terms of quantity,

CWE-119 (Improper Restriction of Operations within the Bounds

of a Memory Buffer) and CWE-787 (Out-of-bounds Write) have the

largest proportion in the Big-Vul and DiverseVul dataset, with

24.22% and 17.98%, respectively. We build a unified model and

shuffle the dataset based on vulnerability types in parallel to ensure

that different types of vulnerabilities are evenly distributed in each

subset. For example, 80% vulnerable samples belonging to CWE-119

are demarcated as training set, and the remaining 20% samples are

divided into two halves for validation (10%) and testing (10%). We

compute the F1-score to evaluate the ability of each approach to

correctly predict specific types of vulnerabilities.

Results. The experimental results are presented in Table 3. Despite

suboptimal performance in detecting certain types of vulnerabili-

ties, our proposed Snopy outperforms the previous best-performing
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baseline SVulD in the majority of cases, with an average improve-

ment of 21.80% and 20.78% in terms of F1-score on the Big-Vul and

DiverseVul dataset, respectively. Particularly, Snopy obtains the

highest F1-score of 75.23% on CWE-476 (NULL Pointer Derefer-

ence) in the Big-Vul dataset, and 66.29% on CWE-416 (Use After

Free) in the DiverseVul dataset. In contrast, SVulD only achieves

an F1-score of 37.59% and 53.58%, respectively. The main reason

for the result is that constrained by the inherent limitations of

linear Transformer-like architectures in learning structural seman-

tics, SVulD fails to capture data-dependence information which is

tightly related to CWE-416 and CWE-476. Furthermore, we observe

that having more training samples for a particular CWE does not

necessarily result in the model learning it better than minor types

of vulnerabilities, which is consistent with a recent empirical study

[54]. For instance, Snopy achieves more than 70% F1-score on CWE-

787 and CWE-476, which only account for 2.25% and 2.45% of all

vulnerable samples in the Big-Vul dataset. This result demonstrates

the potential of Snopy in detecting certain types of vulnerabilities

with limited labeled data.

Answer to RQ2: On two large-scale vulnerability datasets with

CWE information, Snopy produces substantial improvements of

up to 21.80% and 20.78% in terms of F1-score on average over the

previous best-performing baseline in detecting different types of

real-world vulnerabilities.

5.3 RQ3: Ablation Study

Experiment Setup. For sample denoising, we construct the fol-

lowing two variants of Snopy for comparison: (�) without VCCs

(denoted as w/o VCCs): performing noise cleansing only based on

the disclosed vulnerable functions and corresponding patched ver-

sions in VFCs; and (�) without sample denoising (denoted as w/o

SD): directly feeding the entire vulnerable and benign functions

into the DL model for training. For causal graph learning, we com-

pare our proposed CA-GAT with the following four variants: (�)

without node attention (denoted as w/o NA): eliminating the node

attention mask; (�) without edge attention (denoted as w/o EA):

excluding the edge attention mask;(�) without feature caching

scheme (denoted as w/o FCS): constraining the types of spurious

features to each mini-batch; and (�) without causal intervention

(w/o CI ): directly leveraging the graph-level embedding of the in-

put sample for prediction like ReVeal [8]. In each ablation study,

we remove one component at a time to examine the individual

contributions of key designs.

Results. Figure 7 presents the results of Snopy and its six variants.

We can observe that all key designs are essential to achieve the

best performance. Particularly, without the sample denoising, the

F1-score on the three datasets drops by 7.18%, 20.07%, and 15.59%,

respectively. It demonstrates the necessity of filtering vulnerability-

irrelevant parts of vulnerable samples for DL models. For causal

graph learning, Snopy with the node attention, edge attention, and

FCS bring 5.45%-12.77%, 2.86%-5.82%, and 5.19%-20.74% improve-

ments in F1-score on the three datasets, respectively. Among all

variants, we find that the causal intervention module makes the

greatest contribution. Compared to the variant without causal

intervention, Snopy improves the F1-score by 12.26%, 43.91%, and

FFmpeg+QEMU Big-Vul DiverseVul
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Figure 7: The performance of different variants of Snopy on

the three datasets.
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Figure 8: Parameter analysis of loss coefficients and the ca-

pacity of FCS.

37.32% on the FFmpeg+QEMU, Big-Vul, and DiverseVul datasets,

respectively. The results indicate that our proposed causal inter-

vention module facilitates the causal feature learning and brings a

performance improvement in vulnerability detection.

Answer to RQ3: Both sample denoising and causal graph learn-

ing are essential for the performance of Snopy. The most impor-

tant component of Snopy is the causal intervention module that

results in at most 30.51% improvement in F1-score.

6 DISCUSSION

6.1 Sensitivity Analysis

Motivation. In our approach, two sets of key hyper-parameters,

loss coefficients 𝜆1&𝜆2 and capacity 𝑁 of FCS, affect the perfor-

mance of Snopy. The former controls the intensity of feature disen-

tanglement and causal intervention, the latter enriches the diversity
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Statement-Level Semantics

Token-Level Semantics

Vulnerability-Fixing Commit (e4571b8c) of CVE-2021-3739
1  int btrfs_rm_device(struct btrfs_fs_info *fs_info, 
                       const char *device_path, u64 devid)
2  {
3 struct btrfs_device *device;
4 [ ] // omit 10 lines
5 device = btrfs_find_device_by_devspec(fs_info, devid, 
                                             device_path);
6 if (IS_ERR(device)) {
7 if (PTR_ERR(device) == -ENOENT &&
8  -     strcmp(device_path, "missing") == 0)
9  +     device_path && strcmp(device_path, "missing") == 0)
10 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
11 else
12 ret = PTR_ERR(device);
13 goto out;
14 [ ] // omit 119 lines
15 }

Figure 9: A NULL pointer dereference (CWE-476) vulnera-

bility correctly detected by Snopy. The yellow-shaded state-

ments positively contribute to Snopy’s prediction.

of spurious features for causal intervention. Therefore, we vary

these hyper-parameters to assess Snopy’s sensitivity towards them.

Experiment Setup. To keep simplicity, all other configurations

are kept consistent with RQ1, including data partition and metric

computation. For loss coefficients, we fix one as 0.5, and test the

other one at scale [0, 1], incrementing in steps of 0.1. For the capacity

𝑁 of FCS, the value is varied from 0 to 10 with an internal of 1.

Results of Loss Coefficients. The evaluation results on the three

datasets are shown in the top part of Figure 8. We can observe

that, different weights of feature disentanglement 𝜆1 and causal

intervention 𝜆2 have varying impact on Snopy’s performance. In

particular, the F1-score of Snopy stably goes up with the increasing

of 𝜆1 and 𝜆2, and reaches the optimal performance around 0.6 and

0.5, respectively. After that, both two coefficients lead to varying

degrees of performance degradation.

Results of Varying Capacity. Figure 8 (bottom) presents the per-

formance of Snopy with varying capacity 𝑁 . From the results, it is

evident that increasing the number of candidate spurious features

improves the overall performance up to a certain point, under-

scoring the significance of diverse spurious features in enhancing

model performance. Interestingly, we find that the performance

plateaus when 𝑁 exceeds 6. This denotes that our Snopy can deliver

satisfactory performance with limited memory overhead.

Summary: Different weights of loss coefficients have varying

impact on Snopy’s performance, and the larger capacity of FCS

may not always guarantee better performance. Our default hyper-

parameter settings achieve optimal results.

6.2 Case Study: Interpretability

Motivation. While demonstrated superior performance, the black-

box nature hinders the adoption of current neural vulnerability

detectors in practice because they fail to explain why a given code

is predicted as vulnerable [30]. For this purpose, we conduct a case

study to further investigate whether our proposed Snopy effectively

makes predictions based on real vulnerability patterns.

Experiment Setup. In line with previous research [7, 36], we

formalize vulnerability interpretation as a localization task, i.e.,

pointing out a set of crucial statements {𝑠𝑖 , · · · , 𝑠 𝑗 } ∈ 𝑃 that are

most relevant to the detected vulnerable code 𝑃 . To do so, we cal-

culate the attention score 𝛼𝑐𝑖 of each node 𝑣 ∈ V in the causal

sub-graph G𝑐 , as defined in Equation (6). Finally, Top-5 important

statements are derived as interpretations.

Results. Figure 9 presents a correctly detected vulnerability (CVE-

2021-37397) in the DiverseVul dataset. The vulnerable function has

been simplified for a clear illustration. Since btrfs_rm_device()
itself can have case where it only receives devid (at line 1), a NULL
pointer dereference vulnerability can be easily triggered when call-

ing a non-existing device_path via strcmp() (at line 8). Overall,

the vulnerability-triggering statement obtains the highest attention

score (i.e., Rank 1) and its contexts (line 3 and line 5), which reflect

the root cause of this vulnerability, are also included in Snopy’s

Top-5 explanations. This proves the practicality of Snopy when

applied to real-world usage because Snopy can not only accurately

detect vulnerabilities, but also narrow down the scope of manual

review by providing a small fragment of suspicious code elements.

6.3 Threats to Validity

Threats to Internal Validity come from the quality of our ex-

perimental datasets. We evaluated the detection performance of

Snopy on the three large-scale benchmark datasets, including FFm-

peg+QEMU, Big-Vul and DiverseVul. However, existing vulner-

ability datasets have been reported to exhibit varying degrees of

quality issues such as noisy labels and duplication [15]. To reduce

the likelihood of experiment biases, we adhere to the best practice

[19], which discards duplicated samples by comparing the MD5

hashes of the pre- and post-commit versions of the changed func-

tions, and labels vulnerable samples based on two customized rules.

Threats to External Validity refer to the generalizability of our ap-

proach. We only evaluate our approach on C/C++ datasets, and thus

our experimental results may not generalizable to other program-

ming languages (e.g., Java and Python). However, we believe the

key unique design of Snopy (i.e., leveraging vulnerability-related

code changes to reduce vulnerability-irrelevant part of vulnerable

samples, and constructing CA-GAT to learn causal vulnerability

features) is language-agnostic, and thus our approach can be easily

ported for a new programming language. Another threat is the

imprecise identification of VCCs, which may impair the accuracy

of essential vulnerable line localization. To mitigate this, we em-

ploy the state-of-the-art V-SZZ algorithm to identify the induced

versions from disclosed vulnerable functions.

7 RELATEDWORK

7.1 Learning-based Vulnerability Detection

According to their employed model architectures, current DL-based

vulnerability detectors typically can be categorized into two groups:

DNN- and LLM-based approaches.

7.1.1 DNN-based Approaches. Early studies [17, 38, 39] primar-

ily relied on sequential neural networks, such as Long Short-Term

Memory (LSTM) [28] and Gated Recurrent Unit (GRU) [12], to learn

vulnerability features from flatten AST or token sequence. However,

these approaches failed to capture well-defined semantics of the

program structure. To address this issue, Devign [71] leveraged

7https://nvd.nist.gov/vuln/detail/CVE-2021-3739
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Gated Graph Neural Network (GGNN) [35] with a convolutional

module to extract rich structural information of vulnerable code

from joint code graphs. This progress promotes the recent popu-

larity of GNN-based solutions [5, 8, 11, 36]. For instance, AMPLE

[61] simplified the input program graph to alleviate the long-term

dependency problems and fused local and global heterogeneous

node relations for better representation learning.

7.1.2 LLM-based Approaches. As large code models have shown

great potential in automating various software engineering tasks,

LLMs-based vulnerability detection approaches have gained trac-

tion [18, 24, 27, 45, 67]. These works either directly train a vul-

nerability classifier based on fine-tuned large code models (e.g.,

CodeBERT [21] and UniXcoder [26]), or re-train their own LLMs

from scratch to incorporate domain knowledge beneficial for down-

stream vulnerability analysis tasks. For example, LineVul [24]

employed a BERT-like model to generate representations of source

code for vulnerability detection, and leveraged the attention mech-

anism [68] to locate vulnerable statements. SVulD [45] adopted

contrastive learning [69, 70] to fine-tune the pre-trained UniXcoder

to discriminate the semantic difference among lexical similar func-

tions.

Unlike the above approaches that adapt advanced DL models to

learn vulnerability features from the entire vulnerable functions,

our work bridges sample denoising with causal graph learning to

suppress the negative impact of noise information while promoting

learning of real vulnerability patterns for effective detection.

7.2 Causal Theory in Software Engineering

Theory of Causation [29] endows the model with the ability to

pursue real causality without the interference from confounding

factors. Such mechanism is a useful verification tool to achieve a

more complete understanding of black-box neural models in SE

tasks, such as code completion [51] and vulnerability detection

[7, 47, 50]. Coca [7] proposed a dual-view causal inference-based

approach to derive crucial code statements that are most decisive

to the detected vulnerability as interpretations. CausalVul [50] dis-

covered that weakly-robust variable and API names can be abused

as spurious features, and applied causal learning to disable the

detection model from using them for prediction. Our work is dif-

ferentiated by the fact that we focus on capturing causal features

for more effective vulnerability detection, instead of improving the

adversarial robustness and interpretability of code models. As such,

our research has a completely different goal as compared to them.

8 CONCLUSION AND FUTUREWORK

In this paper, we propose Snopy, a novel DL-based approach, which

bridges sample denoising with causal graph learning for effective

detection. Snopy adopts a change-based sample denoising approach

to weed out vulnerability-irrelevant parts of vulnerable functions,

and constructs a novel Causality-Aware Graph Attention Network

(CA-GAT) to capture real vulnerability patterns for prediction. Ex-

periments on the three public benchmark datasets show that Snopy

outperforms the state-of-the-art baselines by an average of 27.22%,

85.89%, and 75.50% in terms of F1-score, respectively.

In the future, we plan to work with our industry partners to

deploy Snopy in their proprietary security systems to uncover

real-world vulnerabilities. In addition, we would like to develop an

explanation module to provide not only fine-grained vulnerable

lines, but also user-friendly explanatory information, such as the

root causes, behaviors, and consequences of vulnerabilities.
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