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Abstract
Transfer-based adversarial attacks have endowed adversarial exam-
ples with the ability to transfer from a source model to an unknown
target model, which poses a more realistic threat to security-critical
applications. Existing transferable adversarial attacks generally
suffer from overfitting to the source model, i.e., the perturbations
are locally optimal in the source model and focus on the model-
specific information. We demand the adversarial perturbation to
contain more generalized knowledge, which reveals the intrinsic
general properties and can introduce model-general optimum into
adversarial examples, for improving transferability. To this end, we
devise a Bi-level Bias Mitigated Attack (BBMA), which empowers
the transferability of adversarial examples by exploring generaliza-
tion in two levels: 1) Progressive filtering of high-frequency sam-
ple components. We first propose to remove the sample-specific
high-frequency components of samples to explore model-level gen-
eration. To simulate how a model evaluates feature importance at
different stages, we devise a stride-wise step-tuning strategy to pro-
gressively produce multiple samples for aggregating the gradients.
2) Accumulated gradient-guided model attention shift. To facili-
tate the sample-level bias mitigation, we employ an accumulated
gradient-guided attention map to distort the more generalized fea-
tures during perturbation generation. Comprehensive experiments
on several benchmarks demonstrate the superiority of our method
in attack transferability over state-of-the-art attacks.

CCS Concepts
• Computing methodologies → Feature selection; Learning
latent representations; • Security and privacy→Domain-specific
security and privacy architectures.
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1 Introduction
As the Deep Neural Networks (DNNs) have become the de facto
tools for various practical applications, their vulnerability to adver-
sarial attacks, i.e., adversarial examples (AEs) that involve imper-
ceptible malicious perturbations, has attracted wide attention [8,
13, 26, 37]. An important property of AEs is their transferability,
which empowers the ability to disturb other unknownmodels in the
black-box settings, posing a more realistic threat to security-critical
applications.

Recently, various methods have been proposed to improve the
transferability of AEs [28, 33, 46, 48]. However, the performance
generally falls inferior compared with white-box attacks. The main
bottleneck in transfer-based attacks is the overfitting of AEs to the
source model, i.e., the adversarial perturbations generated from the
source model are model-specific optimal and would not disturb the
target model since different models behave differently on the same
sample, as shown in Fig. 1 (a). Existing methods single-mindedly
focus on mitigating the model-specific knowledge to reduce the
reasoning gap between the source model and the target model,
yet they fail to explicitly identify and address the structural bi-
ases rooted in frequency and attention mechanisms. In contrast,
we decompose the transferability challenge into two critical bi-
ases: High-Frequency Overfitting Bias(model-level bias) and Focus
Discrepancy Bias(sample-level bias). High-Frequency Overfitting
Bias, concretely, neural networks tend to first fit the low frequency
and as the training process goes deeper, they might capture high-
frequency, sample-specific features that represent highly variable
patterns in the input data [19, 29]. Intuitively, adversarial examples
that primarily manipulate high-frequency, sample-specific features
are unlikely to transfer well among different models due to the
limited generalization. This overlooked issue motivates us to work
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Figure 1: Comparison between existing transferable attacks
and the proposed BBMAmethod. Existing methods single-
mindedly focus on escaping the model-local optimum. Our
method provides bi-level bias mitigation and can better im-
prove the generalization of adversarial examples.

towards perturbations that contain more generalized knowledge
and introduce model-general optimum into AEs. Focus Discrep-
ancy Bias refers to the phenomenon where different neural network
models exhibit significant differences in the regions or features of
the input data they focus on when processing the same sample.
In this paper, we focus on the generalization of adversarial exam-
ples from both model-level and sample-level, and propose a new
transfer-based adversarial attack dubbed Bi-level Bias Mitigated
Attack (BBMA), as shown in Fig. 1 (c). BBMA enriches the gen-
eralized information in adversarial perturbations in two levels: 1)
Progressive filtering of high-frequency sample components
(PFF). BBMA first explores the model-level generalization by re-
moving the high-frequency components of samples. We propose a
stride-wise step-tuning strategy to perform progressive frequency
removal where a frequency mask with step-stride is applied to pro-
duce multiple samples for aggregating the final attention map with
proper frequency remaining. The process of gradually removing
features can be viewed as an effective way to simulate how a model
evaluates feature importance at different stages. By progressively
removing the high-frequency components of an image, we are es-
sentially simulating how the model gradually "ignores" or "focuses"
on different details and features. This approach helps to uncover
which features are more critical for the model’s decision-making
process, and which features can be downplayed or disregarded. It
allows us to assess the model’s ability to prioritize key information,
providing deeper insights into its feature importance evaluation.
In addition, to facilitate the low-frequency component strengthen-
ing, we introduce a sample jitter module to randomly transform
inputs via low-level adjustments for improving sample diversity.
This progressive high-frequency components removal contributes
to the general promotion of samples, and spawns BBMA to ex-
cel in reducing model-specific bias and encouraging more general
information extraction in feature processing. 2) Accumulated
gradient-guided model-specific attention shift (AAS). Along-
side the model-level generalization promotion, we also consider
improving the generalization from sample-level bias mitigation.
Specifically, we devise an accumulated gradient-guided attention
shift method to guide the distortion on more model-agnostic and
class-relevant features. Instead of aggregating gradients from mul-
tiple transformed images in previous methods [15, 41], we propose

to utilize the adversarial perturbations to gradually shift the model
attention, and the gradients are accumulated to better evaluate the
feature importance.

Our contributions can be summarized as follows:

• We first reveal that the single-minded focus of transfer-based
attacks on model bias mitigation overlooks the structural
biases rooted in frequency and attention mechanisms, which
we categorize as High-Frequency Overfitting Bias (model-
level) and Focus Discrepancy Bias (sample-level).

• We propose a generalized transfer-based adversarial attack
called Bi-level Bias Mitigated Attack (BBMA). BBMA intro-
duces a progressive frequency filtering module to remove
the high-frequency components of samples, and an accumu-
lated gradient-guided attention shift module to mitigate the
model-specific feature distortion.

• We demonstrate the effectiveness of our method based on
extensive experiments, and reveal that BBMA can effectively
mitigate both model-level and sample-level bias.

2 Related works
2.1 Adversarial Attacks
Since Szegedy et al. [37] first demonstrated the existence of adver-
sarial examples, numerous attacks have been proposed to explore
the vulnerabilities of neural networks. These attacks are typically
classified into two categories: white-box and black-box attacks.
White-Box Attacks. White-box attacks utilize the gradient in-
formation of the target model to craft adversarial examples. For
instance, the Fast Gradient Sign Method (FGSM) [13] adds per-
turbations in the direction of the gradient to the benign sample.
Iterative Fast Gradient Sign Method (I-FGSM) [23] extends FGSM
into an iterative version. Projected Gradient Descent (PGD) [30]
extends I-FGSM with a random start. Carlini and Wagner Attack
(C&W) [2] designs a loss function that balances between achiev-
ing adversarial effectiveness and keeping the perturbation small.
However, white-box attacks require full access to the target model,
i.e., model structures and parameters, which is often unrealistic in
real-world applications where models are protected or black-boxed.
Black-Box Attacks. Black-box attacks generate adversarial ex-
amples using a source model and exploit the transferability of these
examples to successfully deceive victim models. Some works im-
prove the transferability of AEs with advanced gradient optimiza-
tion methods. For instance, Momentum Iterative Fast Gradient Sign
Method (MI) [8] introduces momentum into I-FGSM to stabilize
the optimization direction and help the attack escape local max-
ima. Similarly, the Nesterov Iterative Fast Gradient Sign Method
(NI) [26] incorporates Nesterov Accelerated Gradient to accumulate
momentum, resulting in improved transferability. Other methods
focus on input transformation techniques to enhance transferability.
For example, Spectrum Simulation Attack (SSA) [28] adds Gaussian
noise and randomly masks the image in the frequency domain to
transform the input image. Likewise, Admix [40] calculates the
gradient on the input image admixed with a small portion of each
add-in image from other categories while using the original label
of the input. In contrast to the aforementioned methods that per-
turb the output layer, some studies focus on disrupting internal
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1) Progressive Filtering of high-Frequency sample components (PFF)

2) Accumulated gradient-guided model-specific Attention Shift (AAS) 3) Attack
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Figure 2: An overview of our BBMA. Given an input clean image 𝑥 , the adversarial example is generated by iteratively
maximizing the distortion on features with an attention map 𝐴. To reduce the model-level and sample-level bias, we propose
PFF to progressively remove the high-frequency components in samples, and then use AAS to shift the model attention to
avoid bias by the guidance of accumulated gradients.

features to enhance transferability, known as feature-level attacks.
As an example, Feature Disruptive Attack(FDA) [12] introduces
an attack method motivated by corrupting features at the targeted
layer. The Neural Representation Distortion Method(NDRM) [33]
maximizes the distance of internal features to disrupt features. In-
termediate Level Attack (ILA) [18] fine-tunes existing adversarial
examples by increasing the perturbation on a target layer. Feature
Importance-aware (FIA) [41] measures the importance of internal
features by aggregated gradients. Random Patch Attack (RPA) [46]
applies patch-wise random transformations to get aggregate grad.
Neuron Attribution-Based Attack (NAA) [48] uses neuron attribu-
tion methods to measure feature importance. Intermediate-Level
Perturbation Decay (ILPD) [24] encourages the intermediate-level
perturbation to be in an effective adversarial direction. Our pro-
posed method also falls into this category.

2.2 Adversarial Defenses
In response to the adversarial attacks, various adversarial defenses
have been proposed to defend against such attacks. One promising
way is adversarial training [1, 13, 20, 31, 34, 47], which leverage
the online generated adversarial examples into the training dataset
so that the model can prefer more robust features during learn-
ing. Ensemble adversarial training [39, 44] explores combining
multiple models to enhance robustness against adversarial attacks
and improve defense strategies. While adversarial training effec-
tively enhances model robustness, it incurs computational costs,
making it impractical for large-scale datasets. To avoid this issue,
many pre-processing methods have been proposed. State-of-art

methods include the use of a High-level Representation Guided De-
noiser (HGD) [25], randomly resizing [42], Randomized Smoothing
(RS) [5], compressing input image [7, 11] and Neural Representation
Purifier (NRP) [32]. In this paper, we employ these state-of-the-art
defenses to evaluate the effectiveness of our attack method.

3 Methodology
3.1 Preliminaries
Given a target model 𝑓𝜃 with parameters 𝜃 and a clean image 𝑥 with
ground-truth label 𝑦, adversarial attacks generate an adversarial
example by injecting imperceptible perturbation 𝛿 on the input
image 𝑥 and optimize the following maximization:

arg max
𝛿

L𝜃 (𝑥 + 𝛿,𝑦), s.t. ∥𝛿 ∥𝑝 ≤ 𝜖, (1)

whereL(·, ·) is the task loss, e.g., cross-entropy loss in classification
task. ∥ · ∥𝑝 denotes the 𝑙𝑝 -norm constraint and 𝜖 is the radius of
the 𝑙𝑝 -norm ball. Such optimization aims to find the perturbation
𝛿 that can most deviate the model predictions from the true la-
bels. Typically, under the white-box setting, i.e., 𝜃 is accessible, the
maximization can be generally achieved by inversing the gradient
as:

𝛿 = sign (∇𝑥L𝜃 (𝑥,𝑦)) , (2)

where sign(·) is the sign function. Intuitively, adding the inversed
gradients on inputs canmaximize themodel loss so that the gradient-
based white-box attacks can achieve near 100% attack success
rate. However, these advances in attack performance vanish when
faced with black-box models, i.e., the gradients are unavailable. The
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(a) (b) (c) (d) (e)

Figure 3: Illustration of the proposed attention shift mecha-
nism. From (a)-(e): The initial attention map, the attention
map generated from the iterations 𝐼 = 0, 1, 2, and the final
iteration. The attention can cover the object mostly as the
gradients accumulate.

transfer-based methods are proposed to utilize a white-box surro-
gate model to generate AEs and attack the target model by improv-
ing the transferability. That is, obtaining 𝛿 = sign

(
∇𝑥L𝜙 (𝑥,𝑦)

)
from a white-box surrogate model 𝑓𝜙 and achieve the maximization
of L𝜃 (𝑥 + 𝛿,𝑦) on target model 𝑓𝜃 . Since 𝜃 is variable and unpre-
dictable, this process requires the perturbation 𝛿 to contain more
generalized information.

3.2 Bi-Level Bias Mitigated Attack
To fully prompt the generalized knowledge in adversarial perturba-
tions, we propose a Bi-Level Bias Mitigated Attack (BBMA) to miti-
gate bias in two levels. Specifically, within the classic framework of
iterative gradient-based adversarial perturbation generation, BBMA
first progressively removes the high-frequency components of sam-
ples to reduce model-specific bias and then applies accumulated
gradient-guided model attention shift to mitigate model-specific
bias. An overview of the whole pipeline is shown in Figure 2. We
present the details in the following.

3.2.1 Progressive Filtering of High-Frequency Sample-Specific Com-
ponents (PFF). Sample Jitter. We start with a sample jitter module
to improve the input diversity. Specifically, we adjust the low-level
properties of images including brightness, contrast, and saturation
via 𝑥 = 𝑥 × 𝛼𝑏 , 𝑥 = 𝑥 + 𝛼𝑐 × (𝑥 − 𝑥), and 𝑥 = 𝑥𝑌 + 𝛼𝑠 × (𝑥 − 𝑥𝑌 ),
respectively, where 𝛼𝑏 , 𝛼𝑐 , and 𝛼𝑠 are the scale factors, 𝑥 is the
image mean value and 𝑥𝑌 is the Y component of image 𝑥 . Note that
the scale factors are randomly selected within a specified bound in
each iteration. Such transformation can contribute to 1) enhancing
the input diversity; and 2) the transformations in the low-frequency
can encourage the general information extraction in DNN mod-
els. Thus, we can get a set of transformed samples denoted as
𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑁 }, 𝑁 is the total number of transformations.
Progressive high-frequency removal. To reduce the sample-
specific bias, we make use of the property of DNNs in the frequency
domain, i.e., a well-trained DNN might capture high-frequency,
sample-specific features, and propose to remove the high-frequency
components of samples. We devise a stride-wise step-tuning strat-
egy to alleviate the immoderate removal. Progressively removing
high-frequency components simulates how a model prioritizes fea-
tures at different stages, revealing which details are critical for
decision-making and which can be disregarded. Specifically, for
each 𝑥𝑖 in 𝑋 , we first apply the Fast Fourier Transform [6] (FFT) to
transform the input from spatial domain into the frequency domain,
followed by shifting the zero-frequency component to the center

(SHIFT), which can be represented as:

𝑥𝑖 = 𝑆𝐻𝐼𝐹𝑇 (𝐹𝐹𝑇 (𝑥𝑖 )) , (3)

where 𝑥𝑖 denotes the frequency map of image 𝑥𝑖 . Next, we apply
an all-0 mask 𝑀 with a centered all-1 window 𝑤 of size 𝑠 × 𝑠 to
remove the high-frequency components. That is, when we apply
the mask𝑀 on the frequency map 𝑥𝑖 , only the components under
the window𝑤 remain. We use a stride 𝑑 to gradually adjust the size
𝑠 of the window𝑤 , which can be described as:

𝑠 = 𝑠 − 𝑙 · 𝑑. (4)

where 𝑙 is the step number and the total number is denoted as 𝐿. 𝑠
is initialized as the radius of 𝑥 . The mask𝑀𝑙 is then applied to 𝑥𝑖
to produce the masked frequency domain representation:

𝑥𝑖 = 𝑥𝑖 ⊙ 𝑀𝑙 , (5)

where ⊙ is the element-wise multiplication. Finally, we rearrange
the frequency domain image to move the zero-frequency compo-
nent back to the edges (ISHIFT), and apply Inverse Fast Fourier
Transform (IFFT) to transform the masked frequency-domain im-
ages back to the spatial domain, which can be represented as:

𝑥𝑖 = 𝐼𝐹𝐹𝑇 (𝐼𝑆𝐻𝐼𝐹𝑇 (𝑥𝑖 )) . (6)

Note that in this process, we apply 𝐿 masks with different values
of 𝑠 on the frequency map, and 𝐿 = 𝑁 . Consequently, 𝑁 resulting
images are generated with different extents of high-frequency re-
moval. We denote the resulting images as T (𝑥) = {𝑥1, 𝑥2, ..., 𝑥𝑁 },
where T (·) indicates the whole PFF process.

When fed to the source model, the gradient obtained is the av-
erage of the gradients in all the samples in T (𝑥), which can be
represented as:

𝑔 =
1
𝑁

𝑁∑︁
𝑛=1

𝑔(𝑥𝑛) . (7)

Since semantically object-aware features and gradients are ro-
bust to the low-level transformation and the model-specific ones
are vulnerable to the low-frequency components, those robust fea-
tures and gradients will be highlighted after aggregation, while the
others would be neutralized.

3.3 Accumulated Gradient-Guided Model
Attention Shift

The model-level bias mitigation is insufficient in comprehensively
prompting the adversarial perturbation generalization. It has been
widely known that different models can perform differently in pro-
cessing the same sample, exhibiting significant differences in the
regions or features of the input data they focus on. An appealing
solution is to maximize the distortion on more model-agnostic
and object-relevant features thus it can be highly likely to disturb
other models. In BBMA, we keep along with this solution and try
to distort the features that are highly likely to be shared across
models. Specifically, we follow the previous methods to evaluate
the importance of features by utilizing gradients since they spec-
ify the contribution of features to the final decision. However, the
source model gradients are also model-specific, thus limiting the
transferability. To address this issue, we propose to use adversar-
ial perturbations as a clue to shift the model attention, and then
accumulate the model gradients on these perturbed images.
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Algorithm 1 Bi-level Bias Mitigated Attack (BBMA)
Input: The clean image 𝑥 , classification model 𝑓 , intermediate

layer 𝑘 , ensemble number 𝑁 , max perturbation 𝜖 , attack itera-
tion 𝑇 , attention shift iterations 𝐼 , the extent of disruption 𝐷 .

Output: The adversarial image 𝑥𝑎𝑑𝑣
Initialize: 𝐴 = 0, 𝑔0 = 0, 𝜇 = 1, 𝛼 = 𝜖/𝑇 , 𝛿 = 0.
1: Obtain feature importance 𝐴0 via PFF.
2: for 𝑣 = 0, 1, · · · , 𝐼 − 1 do
3: 𝑥𝑎𝑑𝑣0 = 𝑥

4: for 𝑢 = 0, 1, · · · , 𝐷 − 1 do
5: L = Σ(𝐴𝑣 ⊙ 𝑓𝑘 (𝑥𝑎𝑑𝑣𝑢 ))
6: 𝑔𝑢+1 = 𝜇 · 𝑔𝑢 + ∇𝑥 L(𝑥𝑎𝑑𝑣𝑢 )

∥∇𝑥 L(𝑥𝑎𝑑𝑣𝑢 ) ∥2

7: 𝑥𝑎𝑑𝑣
𝑢+1 = 𝐶𝑙𝑖𝑝𝑥,𝜖 {𝑥𝑎𝑑𝑣𝑢 − 𝑔𝑡+1}

8: end for
9: Update feature importance 𝐴𝑣 by 𝑬𝒒. (9).
10: end for
11: 𝑥𝑎𝑑𝑣0 = 𝑥

12: 𝐴 = 𝐴𝐼

13: for 𝑡 = 0, 1, · · · ,𝑇 − 1 do
14: L = Σ(𝐴 ⊙ 𝑓𝑘 (𝑥𝑎𝑑𝑣𝑖

))

15: 𝑔𝑡+1 = 𝜇 · 𝑔𝑡 +
∇𝑥 L(𝑥𝑎𝑑𝑣𝑡 )

∥∇𝑥 L(𝑥𝑎𝑑𝑣𝑡 ) ∥2

16: 𝑥𝑎𝑑𝑣
𝑡+1 = 𝐶𝑙𝑖𝑝𝑥,𝜖 {𝑥𝑎𝑑𝑣𝑡 − 𝛼 · 𝑠𝑖𝑔𝑛(𝑔𝑡+1)}

17: end for
18: return 𝑥𝑎𝑑𝑣

𝑇
.

Given the source model 𝑓 , the features of sample 𝑥 from 𝑘-th
layer are denoted as 𝑓𝑘 (𝑥). The gradient with respect to 𝑓𝑘 (𝑥) can
be derived as:

𝑔𝑥,𝑘 =
𝜕𝑝 (𝑥,𝑦)
𝜕𝑓𝑘 (𝑥)

, (8)

where 𝑝 (·, ·) is the logit output w.r.t. the groud-truth label 𝑦. An
attention map that can evaluate the importance of features can
be generated via the normalization of 𝑔𝑥,𝑘 . To reduce the model-
specific bias, we propose an accumulated gradient-guided attention
shift mechanism. Specifically, we iteratively use adversarial pertur-
bations as a clue to shift the model gradient, and accumulate the
current gradients on the previous gradients, in which the accumu-
lated gradient 𝐺𝑖 in the 𝑖-th iteration can be represented as:

𝐺𝑖 = 𝐺𝑖−1 +
1
𝑁

𝑁∑︁
𝑛=0

𝑔T(𝑥𝑛+𝛿𝑖 ),𝑘 , (9)

where 𝛿𝑖 is the adversarial perturbation generated in the 𝑖-th it-
eration and can be obtained by optimizing Eq. (2). Note that the
objective function L here in Eq. (2) is the same as that in the final
attack as described in Eq. (11). T (𝑥𝑛 + 𝛿𝑖 ) denotes the PFF process
for the image 𝑥𝑛 + 𝛿𝑖 . The attention map 𝐴𝑖 can be derived by
normalizing 𝐺𝑖 as:

𝐴𝑖 =
𝐺𝑖

∥𝐺𝑖 ∥2
. (10)

We show an intuitive example in Fig. 3, where we can see that
the final attention map can cover correct and more objects as the
iteration increases.

3.4 Attack Algorithm
After obtaining the attention map𝐴, we follow the general pipeline
of feature-level attacks and aim to distort the key features by utiliz-
ing the following objective function:

L(𝑥) = Σ(𝐴 ⊙ 𝑓𝑘 (𝑥)) , (11)

and the optimization can be represented as:

arg min
𝛿

L(𝑥 + 𝛿,𝑦) , 𝑠 .𝑡 . ∥𝛿 ∥∞ ≤ 𝜖 . (12)

This minimization can be achieved by the existing gradient-
based attacks. Here in our method, we adopt the classic and the
strongest MI-FGSM attack integrating momentum into the gradi-
ent to iteratively generate 𝛿 and generate the adversarial example
𝑥𝑎𝑑𝑣 . A summarized algorithm of the proposed BBMA is shown in
Algorithm 1.

4 Experiments
4.1 Experimental Setup
Dataset. We follow the previous work [41, 48] to conduct our
experiments on the ImageNet-compatible dataset, which contained
1, 000 images used for the NIPS 2017 adversarial competition. We
also follow the experimental setup of AdaEA [3] and conducted
experiments on the CIFAR datasets using their pre-trained models.
Models. For our experiments on the ImageNet dataset, we choose
models from both branches of CNNs and ViTs for the black-box
attack task. The normally trained models are ResNet18 (RN-18) [35],
ResNet50(RN-50) [35], ResNext50 (RX-50) [43], DenseNet121 (DN-
121) [17], Inception-v3 (Inc-v3) [36], Vgg16 (Vgg-16) [14], ViT [10],
PiT [16], Visformer (VF) [4] and Swin [27]. With adversarial train-
ing [22, 39], the corresponding defense models are Adv-Inc-v3
(Inc-v3𝑎𝑑𝑣 ), Ens3-Inc-v3 (Inc-v3𝐸𝑛𝑠3), Ens4-Inc-v3 (Inc-v3𝐸𝑛𝑠4), and
Ens-IncRes-v2 (IncRes-v2𝐸𝑛𝑠 ). Moreover, we also tested on three
defense methods namely HGD [25], RS [12], and NRP [32]. For
the CIFAR datasets, we choose ResNet50 as the substitute model
and select targeted models from both branches of CNNs and ViTs
for the black-box attack task, including ResNet-18 (RN-18) [35],
WideResNet-101-2 (WRN101-2) [45], Inception v3 (Inc-v3) [36],
BiT-M-R50×1 (BiT-50) [21] in CNN branch; and ViT-Base (ViT-
B) [9], ViT-Tiny (ViT-T) [9], DeiT-Base (DeiT-B) [38], DeiT-Tiny
(Deit-T) [38], swin-Base (Swin-B) [27] and Swin-Small (Swin-S) [27]
in ViT branch.
Implementation Details. For the ImageNet dataset, by default,
during the attack process, the maximum perturbation was set to
𝜖 = 16, the number of iterations 𝑇 = 10, and the step size 𝛼 = 𝜖/𝑇
across all experiments. For the CIFAR-10 dataset, the parameters
were set as 𝜖 = 8/255, 𝛼 = 2/255, 𝑇 = 10. For SSA [28], FIA [41]
and RPA [46], the ensemble number 𝑁 = 30, the patch size of
RPA alternately sets 𝑛 = 1, 3, 5, 7. For NAA [48], we let 𝛾 = 1 and
the transformation functions degrade to the linear functions. For
ILPD [24], we run 100 iterations with a step size of 1/255. For PFF
process, the progressive number 𝑁 = 20, 𝐼 = 3, 𝐷 = 10, 𝛽𝑏 = 1.0,
𝛽𝑐 = 1.0, 𝛽𝑠 = 0.3, 𝑑 = 5. Furthermore, we set the decay factor
𝜇 = 1.0 for all the baselines because all the baselines utilize the
momentum method as the optimizer. For feature-level attacks, we
choose the same layer, i.e., Conv3_2 for RN-50, Conv3_3 for Vgg-16,
Mixed_6b for Inc-v3.
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CNNs VITsSource
Models Attack RN-18 RN-50 Inc-v3 Vgg-16 RN-101 RX-50 DN-121 ViT PiT VF Swin Average

MI[8] 42.9 80.4 32.6 45.4 28.7 33.1 39.6 10.6 14.8 19.5 25.5 33.9
SSA[28] 76.3 93.0 71.6 78.5 76.6 77.9 79.0 44.8 58.6 64.3 63.5 71.3
FIA[41] 74.9 76.9 64.8 73.7 52.5 55.0 71.7 24.0 28.3 36.2 43.9 54.7

RN-50 NAA[48] 57.2 60.4 45.9 62.9 42.0 44.5 56.3 19.7 23.9 31.0 35.4 43.6
RPA[46] 75.0 88.4 62.8 75.7 71.0 71.2 76.8 27.4 39.9 52.5 53.5 63.1
ILPD[24] 75.9 87.6 66.5 79.1 67.0 68.8 72.4 35.1 46.9 53.0 53.9 64.2
Ours 91.2 99.2 81.6 91.7 91.4 91.3 93.8 49.6 64.4 78.0 75.5 82.5

MI[8] 46.8 30.7 98.0 49.7 28.1 29.2 44.9 15.8 18.7 24.7 29.4 37.8
SSA[28] 72.7 58.5 99.4 71.8 55.8 59.0 73.4 32.1 37.1 45.0 50.7 59.6
FIA[41] 79.2 59.7 99.6 78.4 53.1 56.2 78.7 27.6 31.6 43.3 48.2 59.6

Inc-v3 NAA[48] 73.0 58.7 99.4 72.6 55.7 56.0 73.7 29.9 35.5 46.0 49.6 59.1
RPA[46] 79.0 65.0 99.4 80.8 62.0 62.9 79.4 34.9 39.9 49.3 53.6 64.2
ILPD[24] 79.7 66.1 98.0 79.0 65.1 64.3 79.6 39.1 45.9 56.2 54.4 66.1
Ours 91.3 80.1 100.0 90.4 77.3 77.8 91.7 46.6 50.4 65.6 66.1 76.1

MI[8] 67.9 42.4 46.3 99.8 32.6 39.3 61.2 14.8 21.4 30.4 37.3 44.9
SSA[28] 92.7 69.7 73.9 100.0 59.0 65.9 87.5 29.6 38.8 57.2 63.1 67.0
FIA[41] 76.9 52.1 50.5 99.3 38.2 42.8 67.5 16.1 20.7 35.2 38.1 48.9

Vgg-16 NAA[48] 84.1 69.2 69.1 99.9 59.8 64 89.1 27.5 40.6 56.3 60.0 65.4
RPA[46] 89.6 68.7 64.7 99.9 58.0 62.2 84.4 22.6 30.6 48.0 51.5 61.8
ILPD[24] 94.0 83.1 74.5 99.9 73.1 77.0 91.3 31.8 46.5 65.9 68.5 73.2
Ours 98.2 88.4 85.0 100.0 82.6 87.2 96.8 39.1 55.5 76.6 77.7 80.6

Table 1: The attack success rates (%) on undefended models by various momentum optimization-based attacks. The bolded
numbers indicate the best results, while the shaded cells represent our method.

Desfense Models Defense MethodsSource
Model Attack Inc-v3𝐴𝑑𝑣 Inc-v3𝐸𝑛𝑠3 Inc-v3𝐸𝑛𝑠4 IncRes-v2𝐸𝑛𝑠 HGD RS NRP Average

MI[8] 21.1 21.9 18.0 14.8 16.3 15.1 21.7 18.4
SSA[28] 67.5 65.5 64.4 58.2 64.5 41.5 65.2 61.0
FIA[41] 51.1 48.1 47.8 38.2 41.1 32.1 42.5 43.0

RN-50 NAA[48] 34.7 32.4 29.9 25.8 30.1 24.5 29.6 29.6
RPA[46] 53.7 51.3 48.5 40.3 49.0 27.2 48.3 45.5
ILPD[24] 61.0 56.9 56.4 50.9 57.1 39.2 54.6 53.7
Ours 77.4 76.1 72.0 64.9 77.5 43.5 66.6 68.3

MI[8] 35.5 32.5 31.5 26.7 27.1 20.5 22.2 28.0
SSA[28] 72.6 67.5 65.8 55.7 58.9 36.2 42.5 57.0
FIA[41] 72.3 66.8 65.4 51.6 55.7 27 32 53.0

Inc-v3 NAA[48] 67.6 64.1 63.3 52.0 64.4 34.5 34.3 54.3
RPA[46] 75.1 73.0 69.4 59.4 62.7 32.1 39.0 58.7
ILPD[24] 75.1 73.8 70.8 62.2 66.4 35.5 40.1 60.6
Ours 90.8 86.6 84.8 74.4 79.8 43.0 47.6 72.4

MI[8] 33.1 32.0 28.3 21.6 27.1 17.5 22.1 26.0
SSA[28] 66.6 60.7 57.2 43.0 55.8 34.1 42.5 51.4
FIA[41] 39.4 36.0 30.1 24.3 31.0 15.5 21.5 28.3

Vgg-16 NAA[48] 59.6 56.6 52.9 41.6 53.0 24.1 31.3 45.6
RPA[46] 56.7 51.9 45.5 33.5 47.7 21.2 28.9 40.8
ILPD[24] 66.4 64.4 61.0 48.8 65.3 34.5 37.4 54.0
Ours 78.1 75.1 72.2 59.0 75.4 35.5 42.1 62.5

Table 2: The attack success rate (%) of different attacks against defense models and defense methods. The bolded numbers
indicate the best results, while the shaded cells represent our method.

4.2 Main Results
Wefirst compare our proposedmethodwith two input transformation-
based attacks, MI and SSA, as well as four feature-level attacks,
FIA, NAA, RPA, and ILPD. We choose RN-50, Inc-v3, Vgg-16 as

the source model for ImageNet dataset, and RN-50 for the CIFAR
datasets. For ImageNet dataset, we generate the adversarial exam-
ples on a single model and test them on the other models, including
normally trained models (Table 1), defense models, and defense
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Datasets Method RN-50 RN-18 WRN-101-2 Inc-v3 Bit-50 ViT-B ViT-T DeiT-B Deit-T Swi-B Swin-S Average

MI[8] 100.0 52.4 34.5 79.4 25.3 5.0 15.1 8.5 10.8 14.9 24.2 33.6
SSA[28] 100.0 78.9 62.3 80.1 40.7 10.5 33.6 17.5 20.6 36.9 52.5 48.5
FIA[41] 61.3 19.0 15.2 73.0 11.2 0.9 2.8 0.8 2.1 2.4 5.0 17.6
NAA[48] 90.3 64.0 51.1 79.3 35.6 10.2 27.5 16.2 18.9 30.4 40.9 42.2
ILPD[24] 99.5 92.2 83.0 80.1 48.5 10.5 42.0 20.5 24.8 51.9 70.1 56.6

CIFAR-10

BBMA 99.9 93.2 80.4 83.7 51.5 13.5 45.2 24.0 27.8 52.4 71.9 58.5
MI[8] 99.9 70.3 62.7 65.9 51.8 24.3 42.1 33.9 39.2 36.1 48.6 52.3
SSA[28] 100.0 91.0 78.9 85.4 68.7 36.1 67.4 51.1 59.7 60.9 77.8 70.6
FIA[41] 97.6 67.9 70.7 69.6 53.8 17.5 36.1 21.7 31.3 30.8 46.3 49.4
NAA[48] 97.6 79.7 71.7 77.9 63.7 37.9 59.2 50.0 52.8 60.1 69.2 65.4
ILPD[24] 98.9 89.7 80.2 86.8 70.7 47.3 73.9 64.7 67.5 78.3 86.1 76.7

CIFAR-100

BBMA 100.0 95.1 82.9 89.8 72.8 45.5 76.0 63.4 66.1 79.8 87.3 78.1
Table 3: The attack success rates (%) on undefended models by various momentum optimization-based attacks. The bolded
numbers indicate the best results, while the shaded cells represent our method.

methods (Table 2). For the CIFAR datasets, we test on models that
are normally trained (Table 3).
Attacking Normally Trained Models. We first craft adver-
sarial examples on RN-50, Inc-v3, and Vgg-16 to attack various
normally trained models in Table 1. As for the black-box perfor-
mance, our method consistently surpasses well-known baseline
attacks on both CNN-based and transformer-based models. In par-
ticular, our method outperforms the runner-up by a maximum of
11.2% and achieves an attack success rate that is at least 7.4% higher
than the best baseline across all models. Such consistent and supe-
rior performance demonstrates that the proposed BBMA can boost
transferability to various model architectures.
Attacking Defense Models. To further verify the superiority of
ourmethod, we conduct attack experiments against four adversarially-
trained models and three defense methods. The results are reported
in Table 2. We can observe that our algorithm can significantly
boost existing attacks. The attack performance on adversarially-
trained models and defense methods is significantly improved by a
margin of 9.2% on average. In particular, our method outperforms
the runner-up by a maximum of 11.8% and achieves an attack suc-
cess rate that is at least 7.3% higher than the best baseline across
all models. It is worth noting that under NRP defense, the per-
formance of SSM slightly surpasses our method when the source
model is Vgg-16. We speculate that this is because NRP maximizes
the distance between the model’s intermediate layer features for
clean and adversarial examples, resulting in better defense against
feature-level perturbations. Despite this, our method achieves the
best performance across all the tasks.
Additional experimental results on CIFAR datasets. We also
conduct experiments on CIFAR datasets and summarize the results
in Table 3. As shown in the table, our experiments on the CIFAR
datasets demonstrate that our method consistently outperforms
existing baseline attacks across both CNN and transformer-based
models. These results provide strong evidence for the effectiveness
and broad generalizability of our method in improving adversar-
ial transferability across a wide range of model architectures and
benchmark datasets.
Visualization of attack performance. To intuitively show the
attack performance, we visualize the heatmaps of clean image and
adversarial examples generated by different methods in both source
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Figure 4: Heatmaps of different inputs in the source model
and target models, with the class label set to ‘rabbit’. (a) input
images, including clean images and adversarial examples
generated by each attack method. (b)-(e) are the heatmaps
on the surrogate models (RN-50) and target models (RN-18,
Vgg-16, DN-161), respectively.

model and target models in Fig. 4. As can be observed, other meth-
ods can disrupt label-related features in the image to some ex-
tent. However, they fail to capture more generalized features and
tend to overfit the source model, allowing model-agonistic and
class-relevant features to remain intact. In contrast, our method
effectively disrupts analogous robust features in both the source
and target models, preventing them from capturing class-relevant
features.

We also utilize Spectrum Saliency Map [28] to visualize the
changes brought about by BMBA. As seen in the Fig. 5, FIA and
RPA primarily focus on the low-frequency components of themodel,
lacking effective utilization of mid and high frequency information.
BMBA can mitigate the model’s bias toward high frequencies, while
also making the importance assessment for low andmid frequencies
smoother and more accurate.
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RN-50 FIA RPAMBMA(ours)

RN-18 FIA RPAMBMA(ours)

Figure 5: The spectrum saliency map [28] generated in dif-
ferent attacks on RN-50 and RN-18. Compared to the other
attacks, our method preserves low-frequency components
and remain proper high-frequency components.

Attack RN-50 Inc-v3 Vgg-16
BBMA w/o all 32.3 50.2 59.5
BBMA w/o PFF 54.1 64 63.9
BBMA w/o AAS 57.2 64.0 73.5

BBMA 82.5 76.1 80.6
Table 4: The average attack success rates (%) on normally
trained models. The adversarial examples are crafted via RN-
50, Inc-v3, and Vgg-16, respectively.

4.3 Ablation Studies
In this subsection, we conduct a series of ablation experiments to
study the effects of key components in our BBMA. To further gain
insight into the performance improvement of BBMA, we conduct
hyper-parameter studies by generating the adversarial examples on
Souce Models and evaluating them on the normally trained models.
On the components of BBMA. To further understand the su-
perior attack performance achieved by our BBMA, we conduct a
series of ablation studies to validate that the PFF, and AAS modules
contribute to improved transferability. The results are summarized
in Tab. 4. From the result, we observe that PFF, and AAS modules
are useful for enhancing the transferability of adversarial examples.
On the target layer𝑘 . Early layers primarily extract data-specific
features, while later layers focus on model-specific features to opti-
mize classification, making them less ideal for transferable attacks.
In contrast, middle layers, with well-separated class representations
and less reliance on model architecture, are the best targets for im-
proving transferability. We apply BBMA to various target layers to
craft adversarial examples and evaluate their transferability, using
RN-50, Inc-v3 as the source models. As shown in Fig. 6, attacking
deeper layers (conv3_2, conv3_3) yields the best transferability.
Therefore, we select these layers as the target layers.
On the progressive number 𝑁 . To determine a good value for
𝑁 , we evaluate BBMA with 𝑁 from 0 to 20 and report the attack
success rate in Fig. 7. When we increase the value of 𝑁 , the impact
of model-level bias can be mitigated, resulting in more accurate
feature importance with BBMA.
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Figure 6: Effect of layer choice on attack success rate. Dif-
ferent layers from the source models are selected to gener-
ate adversarial examples, whose success rates are reported
against different normally trained models.
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Figure 7: Attack success rates (%) of adversarial examples
generated by BBMA with various number of images 𝑁 . As
the value of 𝑁 increases, the attack success rate improves
and reaches the peak value at 20.

5 Conclusion
In this work, we focus on the generalization of adversarial examples,
and proposed a Bi-Level Bias Mitigated Attack (BBMA) to gener-
ate highly transferable adversarial examples. The proposed BBMA
employs Progressive Filtering of High-Frequency Sample-Specific
Components (PFF) to mitigate the model-level bias and obtain more
accurate feature importance. The Accumulated gradient-guided
model-specific Attention Shift (AAS) module is further introduced
to redirect the model’s focus and uncover more robust features in
the source model, thereby mitigating sample-level bias. Extensive
evaluations demonstrate that our proposed BBMA can achieve re-
markably better transferability than the existing state-of-the-art
attacks from multiple analysis in terms of both qualitative and
quantitative perspectives.
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