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Abstract

Federated Learning (FL) enables privacy-preserving dis-
tributed training but remains vulnerable to backdoor attacks.
Attackers can embed malicious trigger-label associations into
the global model by participating in the aggregation pro-
cess. Existing defense methods typically defend against back-
door attacks by detecting and filtering malicious updates that
deviate from benign ones. However, we find that these de-
fenses fail under domain skew, where differing feature dis-
tributions across clients increase update heterogeneity, mak-
ing it harder to distinguish malicious updates from benign
ones. To address this challenge, we propose DoBlock, a novel
defense that utilizes an aggregatable domain infuser inca-
pable of embedding malicious associations, through feder-
ated training to facilitate cross-domain knowledge sharing.
Moreover, DoBlock prevents malicious association propaga-
tion by isolating local models from aggregation, as local mod-
els remain client-specific and rely solely on local data for
training. Experiments on five domain skew datasets (Digits,
PACS, VLCS, Office-Caltech10, and DomainNet) show that
DoBlock maintains attack success rates below 2.5%, while
achieving the highest main task accuracy, demonstrating su-
perior robustness without sacrificing benign performance.

Introduction

Federated Learning (FL) has emerged as a transformative
approach in distributed machine learning, enabling collabo-
rative model training across diverse clients, such as smart-
phones, hospitals, or IoT devices, without requiring the cen-
tralization of sensitive data (McMahan et al. 2017; Tan et al.
2023; Liet al. 2024, 2025; Lin, Tan, and Liu 2025). By keep-
ing data localized, FL addresses privacy concerns while har-
nessing the computational power and data diversity of edge
devices, making it a promising solution for domains like
healthcare (e.g., personalized diagnostics) (Qian et al. 2025),
financial modeling (e.g., fraud detection) (Abdul Salam et al.
2024), and smart infrastructure (e.g., edge computing) (Wu
et al. 2024). Despite its advantages, the distributed nature
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Figure 1: Problem Illustration of backdoor attacks in FL
under domain skew. i) Four clients process data from the
Digits dataset’s distinct domains (MNIST, USPS, SYN,
SVHN), exhibiting pronounced feature divergence (e.g.,
stylistic variations in digits). ii) Attackers inject common
triggers (e.g., pixel patterns) that leverage this domain di-
vergence to camouflage malicious updates.

of FL introduces unique security challenges, with backdoor
attacks standing out as a critical threat (Gu et al. 2019;
Bagdasaryan et al. 2020; Tan et al. 2025a,b). These attacks
involve attackers injecting hidden triggers into the global
model through their local updates, causing the model to mis-
classify specific inputs while maintaining normal behaviour
on benign data. This stealthy manipulation undermines trust
in FL systems.

To mitigate backdoor attacks, defense mechanisms in
FL have been widely studied, such as distance-based de-
fense (Blanchard et al. 2017; Huang et al. 2023a), statisti-
cal distribution defense of client updates (Pillutla, Kakade,
and Harchaoui 2022; Xu, Zhang, and Hu 2025b), and model
refinement defense (Xie et al. 2021; Huang et al. 2023b).
These methods typically rely on a strong assumption: client
data is homogeneous, originating from a similar domain or
sharing stylistic consistency. Under this assumption, ma-
licious updates can be identified as outliers, or their im-
pact can be minimized through aggregation methods. How-
ever, real-world FL scenarios frequently exhibit domain
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Figure 2: t-SNE visualization of domain skew: MNIST (dis-
tinct class clusters) and Digits (skew-induced chaotic over-
lap). Please see Appendix A' for implementation details.

skew, where samples of the same class exhibit different fea-
tures across different clients due to variations in data col-
lection methods, devices, and other factors, as illustrated
in Figure 1. Unlike label distribution skew, which causes
inter-client class imbalance, domain skew directly disrupts
feature-level consistency within shared classes, degrading
model decision boundaries and performance.

This skew compromises the efficacy of the global model
and introduces inconsistencies in client updates. As a result,
it alters the core representations learned by the global model.
To examine this, we analyse feature embeddings using t-
SNE on the homogeneous MNIST dataset and the hetero-
geneous Digits dataset. As illustrated in Figure 2, MNIST
features form ten distinct clusters corresponding to digit
classes, whereas Digits features, even when limited to two
classes, overlap chaotically without class-specific clustering.
This natural heterogeneity causes distance-based and statis-
tical distribution defenses to misclassify benign updates as
outliers. Simultaneously, it allows poisoned updates to blend
in with the heterogeneous update distribution, thereby ob-
scuring the distinction between malicious and benign up-
dates. Moreover, attackers can exploit this skew by craft-
ing triggers that mimic legitimate variations (e.g., device
noise or stylistic variations). This allows them to conceal
malicious updates within the natural diversity of client data,
thereby evading detection by traditional defenses. Conse-
quently, identifying attackers becomes challenging, which
inevitably degrades defense performance, as demonstrated
in Tables 2, 3, and 4.

These observations reveal a critical gap in FL security:
existing defenses are inadequately prepared to counter back-
door attacks under domain skew scenarios. Motivated by
this limitation, we propose DoBlock, a novel defense frame-
work designed to block backdoor attacks that exploit do-
main skew. We identify that the backdoor attack’s success in
FL depends on establishing malicious associations in global
models. Attackers achieve this through combining trigger
injection and label manipulation, propagating poisoned up-
dates through the aggregation. To address this challenge,
DoBlock introduces an aggregatable domain infuser inca-

'The appendix at https://github.com/obius-coder/DoBlock.

pable of embedding malicious associations, through feder-
ated training to facilitate cross-domain knowledge sharing.
Crucially, only this domain infuser is shared and aggregated
across clients, while the client’s local model, responsible for
mapping features to labels, remains private and excluded
from aggregation. This separation blocks the propagation of
malicious associations to benign clients, thereby strengthen-
ing FL against backdoor attacks while maintaining collabo-
rative efficacy. The main contributions are summarized as:

* Vulnerability Discovery: We reveal FL’s backdoor vul-
nerability, which malicious trigger-label associations
propagate through model aggregation. Through rigorous
ablation studies, we demonstrate that disrupting either at-
tack component (trigger injection or label manipulation)
effectively defends against backdoors.

* Novel Defense Framework: We propose DoBlock. To
the best of our knowledge, it is the first backdoor-robust
FL specifically designed for domain skew. DoBlock
isolates local models from aggregation to prevent ma-
licious association propagation while enabling cross-
domain knowledge sharing through its domain infuser.

* Comprehensive Evaluation: We conduct extensive ex-
periments across multiple datasets, validating the ef-
ficacy of DoBlock against various backdoor attacks.
Compared to existing state-of-the-art defense methods,
DoBlock exhibits superior robustness.

Related Work

Domain Skew in FL. Research addressing domain skew in
FL has focused on generalization. FedHEAL (Chen, Huang,
and Ye 2024) selectively discards unimportant updates and
employs a fair aggregation objective to ensure unbiased
global model convergence and equitable performance across
domains. ELCFS (Liu et al. 2021) and CCST (Wang, Guo,
and Tang 2024) exchange frequency-domain amplitudes or
style statistics across clients, incurring privacy leaks and
high communication overhead. FedKA (Sun, Chong, and
Ochiai 2023), a server-side pseudo-label voting that am-
plifies computational costs.FedDG-GA (Zhang et al. 2023)
introduces variance reduction for fairness but complicates
aggregation with dynamic weight calibration. To mitigate
these limitations, gPerXAN (Le et al. 2024) introduces a
lightweight architectural solution using personalized eX-
plicitly assembled normalization and a guiding regularizer,
filtering domain-specific features. However, domain skew
intrinsically elevates backdoor vulnerability by amplifying
client update heterogeneity. Existing generalization-oriented
methods fail to mitigate this security threat as they lack
mechanisms to detect malicious updates.

Backdoor Attacks in FL. FL is vulnerable to backdoor at-
tacks (Bhagoji et al. 2019; Shen et al. 2025). Pixel-level at-
tacks deploy client-specific triggers on local data (Gu et al.
2019; Xie et al. 2019; Barni, Kallas, and Tondi 2019; Liu
et al. 2024), while model replacement attacks (Bagdasaryan
et al. 2020; Kumar, Mohan, and Cenkeramaddi 2024) hijack
global models by scales malicious updates. In contrast, Sybil
attacks compromise the system via collusive clients (Fung,
Yoon, and Beschastnikh 2018). Neurotoxin (Zhang et al.



2022) enhances stealth and effect by selectively updating be-
nign gradients’ least active parameters. Further concealment
is achieved through clean-label attacks (Turner, Tsipras, and
Madry 2018; Huynh et al. 2024), which embed triggers in
target-class samples without altering labels. Our goal is to
defend against all these attacks.

Defending Against Backdoor Attacks in FL. To deal with
backdoor attacks, existing defense methods can be cate-
gorized into: i) Distance-based Defense isolates malicious
clients by evaluating update discrepancies (Blanchard et al.
2017; Fung, Yoon, and Beschastnikh 2018; Shejwalkar and
Houmansadr 2021; Huang et al. 2023a). ii) Statistics Distri-
bution Defense employs statistical methods to neutralize at-
tacks (Nguyen et al. 2022; Pillutla, Kakade, and Harchaoui
2022; Xu, Zhang, and Hu 2025a,b). iii) Model Refinement
Defense enhances resilience through architectural adjust-
ments, including gradient smoothing (Xie et al. 2021), en-
semble distillation (Huang, Ye, and Du 2022), network prun-
ing (Huang et al. 2023b). While these methods improve FL’s
backdoor robustness, they neglect that domain skew con-
flates benign updates with malicious updates, causing de-
fense failure. This work specifically tackles this challenge.

Methodology
Preliminaries

Following typical FL setup (McMabhan et al. 2017; Huang
et al. 2024b), we consider a system with M clients (indexed
by m), each client m holds a local model w,,, and main-
tains a private dataset D, = {(x;, y,)}f\i m, where IV, rep-
resents the data size of the client m. The optimization objec-
tive in FL is to minimize a global loss function, defined as a

weighted sum of local loss functions across all clients:

1 M 1 N,
H}}]HM Z Ni Zﬁ(f(xgn§wvn)ay?)a (1)
m=1"""T =1

where f(-;w) is the model function, and £ is the loss func-
tion (e.g., cross-entropy for classification). The training pro-
cess involves iterative communication rounds, where clients
compute local updates and send them to a central server
for aggregation. We define domain skew as the phenomenon
where data across clients originates from distinct domains,
leading to variations in the conditional feature distribution
P(z|y) across clients. This means that the same label may
have different features across clients. For example, the same
digit ”2” may have different handwriting styles (e.g., curved
vs. straight-line versions) across clients due to regional writ-
ing conventions.

Threat Model

We explore the scenario where there are attackers in the FL.
system. It is a plausible assumption that attackers intend to
inject a backdoor into the benign client’s local model by ma-
nipulating their local training while obeying the FL protocol.
Attacker Capability. As a client in the FL system, the at-
tacker has access to its data, model, and the gradients com-
puted during the training. For an input pair (x,y), the at-
tacker creates a poisoned version of the data as follows:

i=(1-80)@z+500, )

Configurations Dagits PACS
Trigger & Targety | MA ASR | MA ASR
v X 80.72  1.39 [ 83.55 3.5

X v 76.02 10.23 | 7470 22.01
v v 81.99 99.39 | 85.76 100.00
X X 82.06 0.88 | 86.38 2.73

Table 1: Ablation study on trigger ® injection and target la-
bel ¢ manipulation. Please see details in Appendix B.

where ¢ is a binary mask defining the trigger’s location, ®
represents the trigger pattern (e.g., a specific pixel pattern),
and ® denotes element-wise multiplication. The poisoned
data z is then paired with a maliciously assigned target label
4, and this poisoned set is blended with clean data to train
the local model. However, the attacker cannot directly access
or alter the data or labels of other clients in the FL system.
Attacker Objective. The attacker aims to achieve a high
attack success rate (ASR), ensuring that triggered inputs
are consistently misclassified as the target label during in-
ference, while also maintaining a high main task accuracy
(MA) to preserve model performance on clean data.

Motivation

To identify why backdoor attacks succeed in FL, we con-
duct an ablation study on the attacker’s poisoning phase
across domain skew datasets Digits (Zhou et al. 2020) and
PACS (Li et al. 2017) under FedAvg, isolating trigger injec-
tion and label manipulation impacts, as shown in Table 1.

i) Trigger Injection Only: When the attacker injects trig-
gers into the training data without altering the corresponding
labels, the attack fails to establish a reliable backdoor (ASR
is below 4%). This occurs because triggers alone do not suf-
fice to manipulate the model effectively, as the model lacks a
consistent mapping between the trigger and a specific label,
leaving the backdoor unstable and ineffective.

ii) Target Label Manipulation Only: Altering target la-
bels without injection triggers distorts the model’s decision
boundary and induces severe degradation in M.4. Due to the
model’s tendency to overfit, it begins to treat certain inher-
ent data features as implicit triggers, resulting in an ASR
of 10.23% and 22.01%. While this achieves partial attack
success, it significantly degrades performance on clean data.

iii) Trigger Injection + Label Manipulation: Combin-
ing trigger injection with label manipulation produces a
highly effective attack, achieving > 99% ASR with mini-
mal impact on M.A. This synergy enables the model to learn
a stable trigger-label association, establishing a stable back-
door that withstands the federated aggregation process.

These findings reveal that FL’s vulnerability to backdoor
attacks stems from the attacker’s ability to establish a back-
door in their model, subsequently exploiting the aggregation
process to propagate this malicious association. Moreover,
the partial success of label manipulation reveals the global
model’s susceptibility to overfitting in domain skew, which
attackers can exploit to amplify the backdoor effect. Con-
sequently, a robust defense must prevent the propagation of
malicious associations to benign clients’ local models while
accommodating domain skew.
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Figure 3: Architecture Illustration of the DoBlock. Step 1: i) The client trains the received global infuser, and ii) its local
model, then uploads the local infuser to the server, while the local model remains locally on the client. Step 2: The server
aggregates the local infusers by the clients and sends the results back to the clients. Repeat Steps 1 ~ 2 for multiple rounds
until all clients’ local models converge. Finally, only each client’s local model and global infuser are used for inference.

To address this challenge, we propose DoBlock, a novel
defense framework. Unlike traditional methods of aggre-
gating a single global model, DoBlock introduces an ag-
gregatable domain infuser that transforms input features by
injecting domain-specific style characteristics (e.g., bright-
ness, texture, contrast). Crucially, only the domain infuser
is involved in the federated aggregation, while the client’s
local model (responsible for association learning from fea-
tures to labels) is excluded from aggregation. By restricting
feature-label association learning strictly to local clean data,
DoBlock prevents propagation of malicious associations to
benign clients while preserving FL collaboration benefits.

Domain Infuser

The domain infuser is a compact and scalable module, ar-
chitecturally designed to fulfil the core requirements of
our DoBlock framework: to capture client-specific domain
characteristics and serve as the sole component for fed-
erated aggregation. Its design is intentionally lightweight
and constrained to ensure it can effectively adapt features
to a client’s local data features, and cannot learning mali-
cious trigger-label associations. As illustrated in Figure 3,
the module processes input data z € RE*HXW through
hierarchical transformations that preserve spatial topology
while injecting domain awareness.

The process begins with an initial transformation that ex-
tracts primary spatial features from the input data, a critical
step for capturing low-level visual patterns (e.g., edges and
textures) that reflect domain-specific traits as follows:

A (z) = ReLU(Convl(z)) € REHH>XW —(3)

where Conv1 is a convolutional layer with learnable param-
eters. These extracted features are then used to identify and
embed domain-specific information, enabling the module to

distinguish between different client domains as follows:
¢=Q(h"(2)) € R¥, 2 =DoE(g) € RV, (@)

where Q is a domain classifier producing domain probability
vector ¢, DoE is a domain embedder transforming ¢ into an
domain maps z, and K denotes the number of domain cat-
egories. To prepare the features for domain-specific adapta-
tion, a subsequent transformation refines them further while
preserving their spatial structure. This step involves a second
convolutional layer:

h®) (2) = Conv2(h () € RO, (5)

where Conv2 is a convolutional layer that increases feature
abstraction, making the features more suitable for adapting
to diverse client domains.

After refining the features, we employ Feature-wise Lin-
ear Modulation (FiLM) (Perez et al. 2018) to tailor them
to the unique feature distributions of each client (e.g.,
brightness, contrast, texture styles). FILM applies a domain-
specific affine modulation to the adapted features:

& =700 (@) + 8., (©6)
where ® denotes channel-wise multiplication, and 7., 3,
are modulation parameters derived from the domain maps z
through linear projections. Here, -, scales the features while
3, shifts them, with Z and x are of the same dimension. This
enables precise style alignment (e.g., contrast/colour adjust-
ment) to target domains.

Infuser’s simplicity enables domain feature adaptation
while focusing on data style rather than class labels, prevent-
ing learn malicious associations between backdoor triggers
and labels. Crucially, feature-label associations are learned
solely by local models using local data, and these models
never participate in aggregation. This structural separation
shares only benign domain knowledge during aggregation,
blocking backdoor propagation pathways.



MNIST USPS SYN SVHN Avera%e
Methods ASR RA | MA ASR RA|MA ASR RA | MA ASR RA AS
FedAvg [[97.81 99.66 034 [9648 99.80 0.20 [44.58 99.16 0.84 [89.07 98.94 1.06 [81.99 99.30 0.61
FedHEAL |/ 98.17 99.72 0.28 [97.48 99.87 0.13 |61.89 97.87 1.86 [88.82 98.54 0.84 |86.59 99.00 0.77
FedDG-GA ||98.15 99.65 0.35 |97.40 99.75 0.25 |49.80 9750 1.78 [91.20 98.30 1.04 |84.14 98.80 0.85
gPerXAN [|97.90 99.60 0.40 {97.05 99.82 0.18 |55.30 96.81 2.92 |91.50 97.92 1.62 |85.44 98.54 1.28
MKrum 96.50 99.82 0.18 [98.78 99.83 0.17 |30.46 99.82 0.09 [84.00 94.88 5.00 |77.43 98.59 1.36
Foolsgold ||76.96 62.47 33.98|79.13 74.77 24.60|33.61 89.08 5.54 |53.13 96.11 3.50 |60.71 80.61 16.90
MMA 98.40 3.06 95.68(98.35 25.16 73.78|38.29 53.86 19.45|81.70 51.59 44.28|79.19 33.42 58.30
Dnc 9470 99.26 0.74 [98.65 99.38 0.62 |56.89 99.71 0.29 [82.03 95.67 4.33 |83.07 98.51 1.49
FLAME 78.62 98.12 1.88 [98.35 98.27 1.73 |43.94 9944 (0.56 [83.68 87.66 12.34|76.15 95.87 4.13
RFA 98.39 99.38 0.62 [93.82 99.81 0.04 |34.84 99.05 0.50 [87.73 99.21 0.77 |78.69 99.36 0.48
Alignins ||90.53 24.08 72.64(84.35 4337 53.41|2237 84.93 4.48 [34.83 96.73 2.58 |58.02 62.28 33.28
MASA ||79.86 15.88 72.22(88.53 13.36 76.19|30.73 38.63 19.55|49.67 71.89 21.93|62.20 34.94 47.47
CRFL |/9727 99.81 0.19 [96.61 99.92 0.08 |64.96 98.23 1.27 |89.43 98.74 1.24 |87.07 99.18 0.69
FLtrust || 7.95 100.00 0.00 |24.37 100.00 0.00 | 8.53 100.00 0.00 | 6.56 100.00 0.00 | 11.85 100.00 0.00
LockDown || 75.43 425 66.77]65.57 6.00 58.03|22.86 46.33 17.01|50.58 71.83 33.38(53.61 32.10 44.86
SnowBall ||98.00 98.96 0.99 [91.32 99.70 030 |42.16 97.88 1.38 [87.97 97.33 2.55 |79.86 98.47 1.30
DoBlock [[98.24 0.11 98.32[97.66 0.07 97.0572.25 1.91 71.6792.59 0.77 93.23[90.19 0.72 90.06

Table 2: Comparison with the baselines on the Digits dataset under CBA attack. The best is in bold, and the second is underlined.

Overview

The DoBlock framework employs a dual-phase adaptive op-
timization to achieve robust defense while preserving model
utility. As illustrated in Figure 3, at the beginning of the
global communication round ¢-th, the server sends the global
infuser ¢élobal to participating clients. Each client mn then ini-
tializes its local domain infuser as ¢}, = ¢y, The local
training procedure on each client proceeds as follows:

Domain-Specific Feature Adaptation: During this phase,
local model parameters w’, remain freeze while the local
domain infuser ¢!, adapts to client-specific features. For
each input pair (z,y), the infuser transforms features:

i =I(x;0%,), @)

where Z(-; ¢t ) denotes the domain infuser function, gen-
erating style-adapted feature z. These modulated features
are then input into the local model w!, for predictions
f(&;w?,) and probability domain index ¢ = Q(h(!)(x)).
The overall loss function in the first stage is defined as:

Eadapt = CE(.f(ja w'tm)a y) +a - KL (anm)a

Lee Ldom

®)

where k,, represents domain index of client m, « controls
the regularization for domain alignment. The KL divergence
term Lgom trains the domain classifier to identify the domain
origin of input features, enabling precise style adaptation
through FiLM. Gradient updates via gradient descent:

Pt = ¢y — 16V s Ladaps

where 1 is the learning rate of the local domain infuser.
Robust Local Model Refinement: During this phase, the
optimization focus shifts: the local domain infuser ¢!
freeze while the local model w?, undergoes iterative up-
dates. To address potential incomplete feature adaptation,
we employ the following mixed loss:

Emix =B- CE(}C('%? wt )7 y) + CE(f(Iv wfn

m

©))

),y), (10)

where B ~ Bernoulli(7) determines the inclusion of the
adapted feature loss term, 7 controls the adaptation rate. Lo-
cal model updates via gradient descent:

t+1

w7n

Y

t
— 'lUm - nwvwﬁmixv

where 1, is the learning rate of the local model.

Global Aggregation for Infuser: Upon completing local
training, clients upload their local domain infuser parame-
ters ¢/t to the server (never wil1). The server aggregates
them to facilitate knowledge fusion across different clients:

M

N,
t+1 m t+1
iR eS>inr
Experiments

Experimental Setup

Datasets. We evaluate DoBlock through comprehensive ex-
periments on the following two multi-domain classification
benchmark datasets. The Digits (Zhou et al. 2020) contains
four domains: MNIST (LeCun et al. 2002), USPS (Hull
2002), SYN (Ganin and Lempitsky 2015), and SVHN (Net-
zer et al. 2011), each comprising 10 digit classes. The
PACS (Li et al. 2017) includes four domains: Painting, Car-
toon, Photo, and Sketch, exhibiting substantial visual dis-
crepancies in color and texture, with 7 object classes per do-
main. For each benchmark, we implement an FL environ-
ment with 20 clients, ensuring balanced domain representa-
tion through equal client allocation. To validate generaliz-
ability, we conduct additional evaluations on other bench-
mark datasets: VLCS (Fang, Xu, and Rockmore 2013),
Office-Caltech10 (Gong et al. 2012), DomainNet (Peng et al.
2019), MNIST, FMNIST (Xiao, Rasul, and Vollgraf 2017),
and CIFARI10 (Krizhevsky, Hinton et al. 2009), with com-
plete results provided in Appendix C.

Data Heterogeneity and Models. We implement the
Dirichlet distribution Dir(0.5) for non-IID data partition-
ing across all clients. To demonstrate DoBlock’s generality,



Painting Cartoon Photo Sketch Avera%e
Methods ASR™ RA ASR_RA | MA ASR RA | MA ASR RA|MA ASR RA
FedAvg [[75.75 100.00 0.00 [87.70 100.00 0.00 [90.64 100.00 0.00 [88.94 100.00 0.00 [85.76 100.00 0.00
FedHEAL | 84.55 100.00 0.00 |88.03 100.00 0.00 |93.78 100.00 0.00 |80.46 100.00 0.00 |86.71 100.00 0.00
FedDG-GA || 78.50 97.99 0.61 [89.35 97.65 1.21 {93.10 94.86 2.34 |90.20 96.53 2.07 [87.79 96.76 1.55
gPerXAN || 81.00 100.00 0.00 [91.75 98.12 0.71 [96.83 98.59 1.02 {90.38 100.00 0.00 |89.99 99.18 0.43
MKrum | 89.79 100.00 0.00 |83.33 100.00 0.00 {97.39 100.00 0.00 |52.62 100.00 0.00 |80.78 100.00 0.00
Foolsgold ||72.51 56.23 42.44176.53 48.36 51.37|96.03 22.55 76.71|68.92 65.82 32.41|78.50 48.24 50.74
MMA 87.49 100.00 0.00 |87.83 97.95 2.05|96.01 100.00 0.00 |83.06 100.00 0.00 {88.60 99.49 0.51
Dnc 38.15 100.00 0.00 |27.36 100.00 0.00 |75.80 100.00 0.00 |31.60 100.00 0.00 |{43.23 100.00 0.00
FLAME || 89.53 100.00 0.00 |82.74 100.00 0.00 {99.74 100.00 0.00 |41.73 100.00 0.00 |78.44 100.00 0.00
RFA 83.46 70.88 27.81|78.03 59.37 38.98|96.37 81.83 17.60|63.54 96.98 3.02 |80.60 77.27 21.85
Alignins || 58.58 57.15 39.54146.16 61.51 34.63|90.75 15.33 84.67|56.00 34.90 50.01|62.87 42.22 5221
MASA ||79.16 10.29 75.82|74.27 28.29 66.70|97.69 0.93 97.22|59.34 8.58 63.02|77.62 12.02 75.69
CRFL 22.42 100.00 0.00 |10.30 100.00 0.00 | 3.86 100.00 0.00 [32.82 99.09 0.91 |17.35 99.77 0.23
FLtrust 13.55 100.00 0.00 |12.00 100.00 0.00 | 8.01 100.00 0.00 |27.19 100.00 0.00 |15.19 100.00 0.00
LockDown |[21.88 61.66 14.75]48.50 59.36 31.43[52.84 44.54 48.60|32.61 50.51 23.29[38.96 54.02 29.52
DoBlock []90.22 6.42 89.53[94.07 1.62 95.93/96.46 0.56 96.95]88.24 0.25 90.84[92.25 2.22 93.31

Table 3: Comparison with the baselines on the PACS dataset under CBA attack. The best is in bold, and the second is underlined.

Digits PACS
Methods || Af4 ASR RA| MA ASR RA
FedAvg 81.96 9848 1.26 [87.64 99.20 0.80
MKrum ||79.17 87.82 11.71|80.39 93.09 6.74
Foolsgold || 62.82 49.74 39.67|75.76 20.76 69.47
MMA 79.11 143 78.13|86.54 99.93 0.07
Dnc 84.43 97.49 2.30 |29.37 100.00 0.00
FLAME ||76.45 9432 533 [83.25 7.00 82.38
RFA 6.77 100.00 0.00 |86.66 27.43 69.62
Alignins || 59.73 54.80 39.27|67.03 22.73 63.14
MASA 64.43 41.82 42.55|77.08 11.04 73.42
CRFL 86.77 87.65 12.06|15.74 97.63 1.56
FLtrust 11.62 100.00 0.00 |19.75 100.00 0.00
LockDown || 50.20 34.26 36.67|35.63 1640 36.42
SnowBall || 78.42 96.87 2.72 - - -
DoBlock [/90.92 0.81 91.17[92.14 2.32 92.35

Table 4: Comparison with the average performance of the
baselines under DBA attack. The best is in bold, and the
second is underlined. - means the optimization failure.

we evaluate it using different models on diverse datasets:
a lightweight CNN with two convolutional layers and two
fully-connected layers on the Digits and ResNet18 on the
PACS. Infuser architecture details are in Appendix D.

Baselines. We compare with FedAvg (McMahan et al. 2017)
and domain skew solutions, including FedHEAL (Chen,
Huang, and Ye 2024), FedDG-GA (Zhang et al. 2023),
and gPerXAN (Le et al. 2024). Additionally, we compare
several backdoor defense solutions in FL, categorized into
three types: i) Distance-based Defenses: MKrum (Blanchard
et al. 2017), FoolsGold (Fung, Yoon, and Beschastnikh
2018), MMA (Huang et al. 2023a), and DnC (Shejwalkar
and Houmansadr 2021). ii) Statistical Distribution Defenses:
FLAME (Nguyen et al. 2022), RFA (Pillutla, Kakade, and
Harchaoui 2022), Alignins (Xu, Zhang, and Hu 2025a), and
MASA (Xu, Zhang, and Hu 2025b). iii) Model Refinement
Defenses: CRFL (Xie et al. 2021), FLtrust (Cao et al. 2020),
LockDown (Huang et al. 2023b), and SnowBall (Qin et al.
2024) (optimization failure under ResNet18). All baselines
employ their recommended parameter settings.
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Figure 4: Comparison with the baselines of trends in ASR.

Evaluation Metrics. Following (Huang et al. 2023b,
2024a,b; Qin et al. 2024; Xu, Zhang, and Hu 2025a), we
evaluate defense performance on benign clients using three
metrics: i) Main Task Accuracy (M.A), the percentage of
clean test samples correctly classified to their ground-truth
labels. ii) Attack Success Rate (ASR), the percentage of
triggered samples misclassified to the target label. iii) Ro-
bustness Accuracy (R.A), the percentage of triggered sam-
ples that correctly classify to their ground-truth labels. For-
mal metric definitions are provided in Appendix E.

Attack Settings. To simulate realistic adversarial persis-
tence, we implement a multi-round attack paradigm where
attackers iteratively submit poisoned model updates. We set
the attacker ratio to 40% in each domain, with the local poi-
soned data portion fixed at 0.5, and attack target § = O.
Our evaluation includes eight backdoor attacks: CBA (Gu
et al. 2019), DBA (Xie et al. 2019), FCBA (Liu et al. 2024),
SIG (Barni, Kallas, and Tondi 2019), ModRep (Bagdasaryan
et al. 2020), Sybil (Fung, Yoon, and Beschastnikh 2018),
Neurotoxin (Zhang et al. 2022), and Clean Label (Turner,
Tsipras, and Madry 2018). Unless specifically stated, the
CBA attack is used for all experiments.

Implemental Details. For a fair comparison, we fol-
low (Chen, Huang, and Ye 2024; Huang et al. 2024a). We set
the global communication rounds to 200 and the local epoch
to 1. Backdoor attacks activate during the final 100 rounds.
Optimization uses SGD with learning rate 7,, = 14 = 0.03.



Digits PACS

Attacks MA ASR RA | MA ASR RA
FCBA 90.32 0.76 90.02790.56 2.45 90.18
SIG 89.53 0.65 89.65|91.28 1.92 90.07
ModRep 87.92 0.54 88.37|91.81 1.75 91.03
Sybil 91.23 0.87 90.31(9245 2.03 91.74
Neurotoxin || 89.35 0.72 89.64191.99 1.80 94.19

Clean Label || 88.78 0.79 89.15/91.67 1.60 91.81

Table 5: Results on different backdoor attacks.
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Figure 5: Results on different client scales.

Its weight decay is le-5, and momentum is 0.9. The client
participation ratio is set to 1.0. The training batch size is 64.
For DoBlock, the default hyperparameters are set as o = 1.0
and 7 = 0.5. We fix the random seed to ensure reproduction
and conduct experiments on the NVIDIA 3090. We utilize
the mean performance value of the last five communication
epochs as the final evaluation results.

Main Results

Comparison with the Baselines. Tables 2, 3, and 4 illustrate
the final defense effectiveness by the end of the FL process
compared with baseline methods. The results demonstrate
DoBlock’s superior performance across all threat scenarios,
confirming its enhanced robustness against backdoor attacks
in domain skew federated environments. Take the result of
the CBA attack on Digits as an example, our method outper-
forms the best counterpart with a gap of 31.38% on the av-
erage ASR metric, revealing baselines inability to perform
effective backdoor defense under domain skew. We further
plot both ASR during the communication process in Fig-
ure 4, where DoBlock maintains significantly more stable
defensive performance compared to baselines. More com-
parisons are given in Appendices F to .

Robustness Against Different Attacks. We conduct exper-
iments to validate DoBlock’s consistent defense capability
against six backdoor attacks, as shown in Table 5. DoBlock
consistently maintains ASR below 2.45% and R.A above
88.37%, demonstrating generalizability and reliability in di-
verse morphologies of backdoor attacks. Notably, in the
most challenging Sybil attack scenario, we simulate extreme
data poisoning with only one benign client per domain.
Impact of Client Scale. We demonstrate the effectiveness
of DoBlock with different numbers of clients in Figure 5. As
the number of clients increases, the average number of sam-
ples assigned to each client decreases, resulting in a drop
in MA and R.A. Furthermore, DoBlock consistently per-
forms defense with different numbers of clients, showing the
adaptability and scalability in domain skew scenarios.
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Figure 6: Comparison with the baselines of GPU overhead
(GB) and average per-round runtime (s) on PACS.

] Digits PACS
Configurations || MA ASR RA | MA ASR RA
with CBA attack
w/o FILM & Q [[87.37
w/o Q 88.81
All components|[90.19
with DBA attack
w/o FILM & Q [[87.91
w/o Q 88.97
All components|[90.92

87.557190.54 2.38 90.33
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Table 6: Ablation study of components on Digits and PACS.

GPU Overhead & Time Efficiency. As shown in Figure
6, DoBlock introduces moderate overhead in GPU memory
and runtime compared to other defense methods. Its demon-
strated robustness proves this trade-off worthwhile.
Ablation Study. To provide a comprehensive analysis of the
effectiveness of DoBlock, we conduct ablation studies com-
paring two key components: Feature-wise Linear Modula-
tion (FiILM) and Domain Classifier (Q). As shown in Ta-
ble 6, each component makes a significant contribution to
the overall performance, with their combined implementa-
tion yielding optimal results. Notably, DoBlock’s defence
against backdoor attacks stems from its architecture, which
blocks the propagation of malicious associations. Please see
Appendix J for details on hyperparameter analysis, infuser
scalability, and convergence analysis.

Conclusion

In federated learning, domain skew increases vulnerability
to backdoor attacks, making it difficult to distinguish ma-
licious updates from benign updates. This paper proposes
DoBlock, a novel defense framework that, by isolating local
models from aggregation, ensures that only benign, domain-
specific knowledge (via the infuser) is shared across clients,
rather than the entire model, which could include malicious
updates. This isolation effectively blocks the spread of mali-
cious associations, as the local models rely solely on local
training data for training. Additionally, DoBlock employs
a two-phase adaptive optimization strategy that guarantees
that local models focus solely on accurate predictions. Ex-
tensive experiments on domain skew datasets, with results
showing that it outperforms the state-of-the-art defenses.
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