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Abstract

As large language models (LLMs) scale, their inference in-
curs substantial computational resources, exposing them to
energy-latency attacks, where crafted prompts induce high
energy and latency cost. Existing attack methods aim to
prolong output by delaying the generation of termination
symbols. However, as the output grows longer, controlling
the termination symbols through input becomes difficult,
making these methods less effective. Therefore, we propose
LoopLLM, an energy-latency attack framework on the ob-
servation that repetitive generation can trigger low-entropy
decoding loops, reliably compelling LLMs to generate un-
til their output limits. LoopLLM introduces (1) a repetition-
inducing prompt optimization that exploits autoregressive
vulnerabilities to induce repetitive generation, and (2) a
token-aligned ensemble optimization that aggregates gradi-
ents to improve cross-model transferability. Extensive exper-
iments on 12 open-source and 2 commercial LLMs show
that LoopLLM significantly outperforms existing methods,
achieving over 90% of the maximum output length, compared
to 20% for baselines, and improving transferability by around
40% to DeepSeek-V3 and Gemini 2.5 Flash.

Code — https://github.com/neuron-insight-lab/LoopLLM

Introduction

Large Language Models (LLMs) (Touvron et al. 2023;
Achiam et al. 2024; Grattafiori et al. 2024) have demon-
strated impressive performance in a wide range of real-
world applications (Wu et al. 2023; Lyu et al. 2024), due
to their powerful capabilities enabled by billions of parame-
ters. However, their growing scale requires substantial com-
putational resources for the training and inference process
(Samsi et al. 2023). Recent studies (Desislavov, Martinez-
Plumed, and Herndndez-Orallo 2023) suggest that inference
alone accounts for up to 90% of the total energy consump-
tion across the lifecycle of LLMs, making inference effi-
ciency a critical concern for system availability. Despite this,
current research has focused primarily on the integrity and
confidentiality aspects of LLMs (Yi et al. 2024; Das, Amini,
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and Wu 2025), while the availability component of the secu-
rity triad has received limited attention (Meftah et al. 2025).
This gap introduces serious threats: adversaries can exploit
LLM inference inefficiencies to intentionally increase com-
putational and energy costs, leading to severe consequences
in resource-constrained or time-sensitive applications.

In this paper, we explore energy-latency attacks against
modern LLMs, a class of adversarial attacks aimed at max-
imizing energy consumption and latency time during infer-
ence. Such attacks were first proposed by (Shumailov et al.
2021), who demonstrated their effectiveness on transformers
model by increasing the representation of sentences. Simi-
larly, (Feng et al. 2024) employed perturbation-based mu-
tations to prolong the model output for desirable purposes.
(Dong et al. 2025) proposed effective energy-latency attacks
against LLMs utilizing a parameterized proxy.

Despite the fact that current energy-latency attacks have
achieved some advances against LLMs, they still exhibit two
significant limitations. (1) Limited Attack Effectiveness.
Current methods primarily rely on delaying the generation
of the end-of-sequence (EOS) token, which signals termi-
nation, to prolong output length, thus increasing resource
consumption. However, since this strategy does not funda-
mentally alter the output structure, it becomes difficult to
suppress the generation of EOS through input as the output
grows. As a result, the generation process may still terminate
early, limiting the effectiveness of these methods. (2) Poor
Cross-Model Transferability. Existing approaches are pri-
marily built upon gradient-based optimization in white-box
settings, making them overfit the source model. This results
in poor cross-model transferability, significantly limiting the
practicality of these attacks in real-world scenarios.

To address these limitations, we propose LoopLLM, a
simple yet effective energy-latency attacks framework that
compels LLMs to generate repetitive content until the max-
imum output length, substantially increasing energy con-
sumption and latency time. We first investigate the phe-
nomenon of repetitive generation, which steers the LLM
generation process toward low-entropy loops, forcing the
model to generate up to the maximum length. Based on this
sight, we design a repetition-inducing prompt optimiza-
tion that exploits autoregressive vulnerabilities to induce



LLMs into repetitive generation. Compared to prior methods
that delay EOS, LoopLLM more reliably triggers maximum-
length output, leading to more effective energy-latency at-
tacks. Furthermore, to improve transferability across mod-
els, we introduce a token-aligned ensemble optimiza-
tion that aggregates gradients from multiple surrogate mod-
els sharing the same tokenizer. We conduct extensive ex-
periments on 12 open-source and 2 commercial LLMs,
demonstrating that LoopLLM significantly outperforms ex-
isting baselines. Specifically, LoopLLM achieves more than
90% of the maximum output length, compared to 20% for
baselines, and improves transferability by around 40% to
DeepSeek-V3 and Gemini 2.5 Flash.

In summary, the contributions of our work are as follows:

* We propose LoopLLM, a simple yet effective energy-
latency attacks framework that induces LLMs into repet-
itive generation, increasing energy and latency costs.

e We introduce repetition-inducing prompt optimization
and token-aligned ensemble optimization to enhance the
effectiveness and transferability of attacks, respectively.

* We conduct extensive experiments on 12 open-source
and 2 commercial LLMs that demonstrate the superiority
of LoopLLM over existing baselines.

Related Work
Energy-Latency Attacks

Energy-latency attacks aim to compromise system availabil-
ity by inducing excessive energy consumption and infer-
ence latency. A seminal work by (Shumailov et al. 2021)
introduced sponge examples that significantly increase en-
ergy and latency costs during inference. Subsequent studies
extended such attacks to multi-exit networks (Hong et al.
2021), object detection (Shapira et al. 2023), and vision-
language model (Gao et al. 2024a). In LLMs, since the en-
ergy and latency costs are mainly determined by the length
of the output, several approaches have emerged (Chen et al.
2022; Gao et al. 2024b). LLMEffiChecker (Feng et al. 2024)
identifies critical tokens linked to long outputs and applies
minimal perturbations at different levels, but is less effective
in modern LLMs due to their robustness to subtle changes.
Engorgio (Dong et al. 2025) employs a parameterized proxy
distribution to track the prediction trajectory of long se-
quences, but their approach is tailored for text completion
tasks. Although existing approaches effectively increase the
output length by suppressing the EOS token, LoopLLM
based on repetitive generation demonstrates superior capa-
bility in triggering endless output from LLMs.

Repetitive Generation

Repetitive generation (Olsson et al. 2022) refers to the phe-
nomenon in which language models continuously produce
the same or highly similar sequences during inference. The
issue is observed in autoregressive models of varying scales
and severely compromises the quality of the generated text
(Xu et al. 2022). While often regarded as a generation flaw,
repetitive generation has also been exploited as a vector
for adversarial attacks. (Hammouri, Derya, and Sunar 2025)
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Figure 1: Left: The entropy of each generation token for
varying numbers of repetitions in the input. Right: Compar-
ison of average output entropy for varying numbers of repe-
titions in input and output in the instruction-aligned model.

manually crafted non-halting queries that force LLMs into
persistent repetition. However, this manual construction is
labor-intensive and lacks scalability. (Geiping et al. 2024)
proposed an automated attack to force LLMs to generate
repetitive content, but its reliance on the initial response pat-
terns of the model limits its effectiveness. Building on these
insights, we propose LoopLLM that exploits autoregressive
vulnerabilities to induce LLMs into repetitive generation.

Motivation

Mechanism Behind Repetitive Generation. Repetitive
generation in LLMs arises from their autoregressive mech-
anism, where each token is generated based on the preced-
ing context. This design introduces an inherent vulnerabil-
ity: once the model begins to generate content that has al-
ready appeared, the mechanism may reinforce the repetition,
trapping the model in repetitive generation. Intuitively, the
likelihood of such behavior increases with the frequency of
repetition in the input. To validate this, we quantify this rep-
etition using entropy, which measures the uncertainty of the
language model over the next token. As shown on the left
of Figure 1, progressively increasing the number of repeated
segments in the input causes the entropy of generated to-
kens to rapidly converge to low values, indicating that the
output distribution becomes highly concentrated on a set of
tokens. This confirms the formation of low-entropy loops, a
key mechanism underlying repetitive generation.

Repetition in Instruction-Aligned LLMs. However, our
focus is on dialogue scenarios, where instruction-aligned
LLMs use chat templates to separate user input from model
output. When repetitions are embedded solely in the input,
well-aligned LLMs often disregard them as irrelevant. As
shown on the right of Figure 1, increasing repetition in the
input does not decrease the output entropy averaged over all
tokens generated. In contrast, introducing just a few repeti-
tions into the output rapidly reduces the entropy, indicating
the successful induction of repetitive generation. Detailed
experimental setups for both are provided in Appendix A.
Building on these observations, we propose LoopLLM
that induces the model not only to recognize repetition in the
input, but also to reproduce it in the output, which exploits
the autoregressive vulnerability to reinforce the repetition.
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Figure 2: An overview of LoopLLM to induce LLMs to repetitive generation.

Preliminaries
Problem Formulation

Autoregressive LLMs. Consider an input text x, an LLM
f and a sequence of output tokens 'y = {yi,y2,...,¥n},
where y; represents the i-th generated token, N is the out-
put length. Modern LLMs like LLaMA typically adopt the
decoder-only transformer architecture that generates tokens
in an autoregressive manner. Autoregressive LLMs generate
one token at a time given the input and the previously gen-
erated tokens. Formally, the probability distribution after the
Softmax(-) over the i-th generated token can be denoted as:

Pi (X;¥1,...,Yi-1) = Softmax (f (X;¥1,...,¥yi-1)), (1)
where P;(-) € RIVI, |V| is the vocabulary size, and f(-)
represents the forward pass of the model. Due to the token-
by-token generation process, energy and latency costs are
largely determined by the output length rather than the input
length (Feng et al. 2024; Dong et al. 2025). We provide em-
pirical evidence supporting this observation in Appendix B.

Optimization Objective. Based on this observation, our
objective is to maximize the output length to enable effec-
tive energy-latency attacks. Unlike prior methods that delay
EOS, we aim to induce repetitive generation, thereby trig-
gering endless output during LLM inference. To this end,
we design an adversarial suffix x; appended to the raw in-
put X, forming an adversarial prompt X,gy = X @ Xs, where
@ denotes concatenation. We formulate the objective as an
optimization problem with the aim of finding the suffix that
minimizes a loss function £, which encourages stable repe-
tition. The optimization problem is thus formulated as:

rr)l(in L (Xadv) - ()

Threat Model

We consider two adversarial scenarios for energy-latency
attacks against modern LLMs. Detailed discussions of the
threat model are provided in Appendix C.

* White-box setting: Adversaries have full access to the
target model’s details and perform gradient-based opti-
mization to craft prompts that induce repetitive genera-
tion, forcing outputs to reach the maximum token limit.

» Black-box setting: Adversaries lack knowledge of the
target model and typically leverage accessible surrogate
models to craft prompts, relying on transferability to in-
duce repetitive generation in the unseen target model.

Methodology
Overview

We present LoopLLM, a simple yet effective attack frame-
work that constructs adversarial prompts capable of trigger-
ing repetitive generation in LLMs. As illustrated in Figure 2,
the framework consists of two core components: repetition-
inducing prompt optimization and token-aligned ensemble
optimization. The first component exploits autoregressive
vulnerabilities by initializing a repetitive suffix and itera-
tively optimizing it with a cycle loss that reinforces the rep-
etition, trapping the model in low-entropy loops. The sec-
ond component improves transferability by aggregating gra-
dients from multiple surrogate models that share the same
tokenizer to construct more generalized adversarial prompts.

Repetition-Inducing Prompt Optimization
Initialization Phase. We begin by constructing an initial
suffix composed of a short token sequence repeated multi-
ple times, each termed cyclic segment. Specifically, we first
sample tokens from the model vocabulary to form the cyclic
segment. This cyclic segment is then repeated sequentially
to construct an initial suffix token t; of length L:

cyclic segment
——
to={t1, 12, ..., tc,t1, b0, .. te by ...} 3)

L

where c is the length of the cyclic segment and #; is the i-th
token within it. Before the forward pass, we need to decode
the initialized suffix token t into the suffix text x;, which
is then concatenated with the raw input to form the adver-
sarial prompt. Moreover, since modern LLMs, particularly
instruction-aligned models, require input formatted within
chat templates, the adversarial prompt should be embedded
within the specified template to ensure correct processing.



Cycle Loss Design. As discussed in the Motivation Sec-
tion, establishing persistent loops in instruction-aligned
LLMs requires not only the presence of repetitive patterns
in the input but also their reproduction in the output. There-
fore, we introduce a cycle loss to optimize the adversarial
suffix, which encourages the model to reproduce the cyclic
segment, steering the generation process toward low-entropy
loops. Since enforcing LLMs to generate specific tokens is
challenging, we adopt an untargeted objective that increases
the predicted probabilities of tokens within the cyclic seg-
ment. To account for uncertainty in the occurrence position
of these tokens, the loss encourages the model to generate
them at every output position. The loss is defined as follows:

N

1 S
Lcycle (Xadv) = N Z log JZ_; Pij (Xadv) » 4

i=1

where N is the output length and Pl.zj is the probability of the
Jj-th token within the cyclic segment at the i-th output posi-
tion. Notably, we employ softmax-normalized probabilities
rather than logits to better measure the relative confidence
when predicting the next token (Dong et al. 2025).

Gradient-Based Token Search. A primary challenge in
optimizing the loss (see Equation 2) is that the discrete suffix
cannot be optimized by standard gradient descent. To avoid
this, we introduce a gradient-based token search strategy.
The core idea is to obtain gradients for all tokens with re-
spect to the loss, enabling to use single-token substitutions
to maximally reduce the loss. This is achieved by leverag-
ing one-hot vectors to compute gradients for all tokens (Zou
et al. 2023). Specifically, we compute the gradients of each
token in the vocabulary V at the i-th position in the suffix as:

Ve,i -Ecycle (Xadv) € Rlvla (5)

where e;, represents the one-hot vector corresponding to the
token at the i-th position in the suffix (i.e., a vector of length
|V| with a value of one at index #; and zeros elsewhere).
To avoid local optima, we select the top K tokens with the
largest negative gradients as candidate substitutions for each
token in the suffix, resulting in up to K X L total candi-
dates. To reduce computational cost, we randomly sample
B (< K x L) candidates from this set, recompute their loss
values, and select the one that minimizes the loss as the
updated suffix for the next iteration. The process continues
until reaching the maximum steps or until early stopping is
triggered when the output entropy stabilizes at a low level.

Token-Aligned Ensemble Optimization

To enhance transferability, we employ an ensemble of M
surrogate models to update the suffix at each optimization
step. Specifically, for each token in the suffix, we compute
the gradients with respect to the loss using one-hot vectors
for each surrogate model. We then aggregate these gradients:

M
Z Ve,i ‘Ec(;c)le (Xadv) s (6)
j=1
and use them to update the suffix. By leveraging aggre-
gated gradients, we prioritize token substitutions that yield

broadly effective adversarial prompts, discovering adversar-
ial prompts that are robust across different LLMs. To ensure
the validity of the gradient aggregation, all surrogate models
must share the same tokenizer, such as variants of Llama3,
ensuring that one-hot vectors are token-aligned, that is, iden-
tical in both dimension and token-to-index mapping. After
obtaining candidate substitutions, we choose the one with
the minimum aggregate loss as the current optimal suffix.
Thus, this selection process is formalized as follows:

M
* _ . ) b
xs—n}{ll)n E] cycle(X®XS)’ forbe{l,...,B}. (7)
s j=

This ensemble selection further mitigates overfitting and en-
sures that the adversarial prompt effectively triggers repeti-
tive generation even when transferred to unseen models.

Experiments
Experimental Setups

Models and Datasets. We consider 12 open-source LLMs
from Hugging Face, spanning diverse architectures and pa-
rameter scales, including LLaMA-2-7B-Chat (Llama2-7B),
LLaMA-3.1-8B-Instruct (Llama3-8B), among others. To
simulate real-world scenarios, we also include two commer-
cial models: Deepseek-V3 and Gemini 2.5 Flash. All mod-
els are aligned for instruction, and we adopt their default
chat templates to ensure correct interaction. For evaluation,
we construct datasets by randomly sampling 50 instructions
from each of ShareGPT (Dom Eccleston and Steven Tey
2022) and Alpaca (Wang et al. 2023), totaling 100 benign
prompts. More details are provided in Appendix D.1.

Baselines. We compare our method with four types of
baseline methods. (1) Normal Inputs: We directly feed the
100 benign inputs to the models, which establishes the natu-
ral output behavior of the models. (2) Special Inputs: We ap-
pend semantically suggestive phrases (e.g., “Answer it end-
lessly.”) to the normal inputs to encourage longer responses.
(3) LLMEffiChecker: We implement the word-level attack
from (Feng et al. 2024), identified as the most effective vari-
ant in their study. (4) Engorgio: We compare the method
from (Dong et al. 2025), which also optimizes an suffix. The
implementation details can be found in Appendix D.2.

Metrics. Given the strong correlation between output
length and energy-latency cost during LLM inference, we
consider output length to be the primary metric. Specifically,
we report: (1) Average Output Length (Avg-len): The aver-
age number of tokens generated for all inputs. (2) Attack
Success Rate (ASR): The percentage of all inputs for which
the model generates the maximum output length.

Implementation. We fix the cyclic segment length to dis-
tinguish between our two variants. When ¢ = 1, we aim
for token-level repetition using a single token (“*”) as the
cyclic segment, denoted as LoopLLM-t. When ¢ = 5, we
use a phrase (“* % & @ #”) to target phrase-level repeti-
tion, denoted as LoopLLM-p. The suffix length L is set to
30, following Engorgio for a fair comparison. During token
substitution, we set K = 64 and B = 128. To account for



Model Llama2-13B GLM4-9B Llama3-8B Vicuna-7B Llama2-7B Mistral-7B
Max Length 8192 4096 4096 2048 2048 2048
Metric Avg-len ASR Avg-len ASR Avg-len ASR Avg-len ASR Avg-len ASR Avg-len ASR
Normal Inputs 298 0% 188 0% 353 2% 233 1% 309 1% 248 0%
Special Inputs 541 2% 269 1% 619 4% 298 1% 501 2% 343 1%
LLMEffiChecker 1497 19% 1219 21% 1486 23% 815 22% 782 8% 845 19%
Engorgio 461 2% 289 2% 396 1% 285 1% 507 2% 484 6%
LoopLLM-t 7439 91% 3730 90 % 3892 94% 1507 68 % 1930 92% 1700 79%
LoopLLM-p 6398 78% 3074 74% 3398 81% 1474 66% 1689 77% 1457 63%
Model Phi4-mini StableL.M-3B Llama3-3B Qwen2.5-3B Gemma2-2B Llama3-1B
Max length 1024 1024 1024 1024 1024 1024
Metric Avg-len ASR Avg-len ASR Avg-len ASR Avglen ASR Avglen ASR Avglen ASR
Normal Inputs 230 4% 222 0% 270 1% 284 1% 270 0% 294 2%
Special Inputs 291 4% 295 1% 439 3% 400 1% 412 0% 507 11%
LLMEffiChecker 617 32% 619 28% 638 27% 679 31% 711 23% 680 27%
Engorgio 299 7% 353 4% 355 2% 337 2% 361 1% 399 10%
LoopLLM-t 971 92 % 712 46 % 982 93% 922 80% 836 65% 1024 100%
LoopLLM-p 964 92% 545 24% 882 78% 841 67% 641 30% 996 96%

Table 1: Results of attack effectiveness comparing our method variants with baseline methods on modern LLMs. The best
results are highlighted in bold, and the second best results are underlined.

Model GLM4-9B Llama2-7B
Metric Avg-len ASR  Avg-len ASR
Normal Inputs 624 54% 475 26%
Engorgio 893 82% 866 74%
LoopLLM-t 1024 100% 1024 100%
LoopLLM-p 1024 100% 1024 100%

Table 2: Results on the text completion task.

randomness decoding, each input is evaluated 16 times. An
attack is deemed successful if the proportion of trials that
reach the maximum length exceeds p = 0.125. Optimiza-
tion is allowed for up to 20 steps, with early stopping after
success. Due to resource constraints, the maximum output
length is set to 1024 tokens. We also evaluate longer limits
on select models to demonstrate scalability. Representative
prompts generated by all methods in Appendix D.3.

Effectiveness Results

Table 1 reports the results of attack effectiveness in white-
box settings. Special Inputs induce a slight increase in output
length compared to Normal Input, indicating that LLMs can
interpret semantic intent but do not naturally generate ex-
cessively long outputs without explicit optimization. LLM-
EffiChecker increases the length over the Normal Input, but
both its Avg-len and ASR remain significantly lower than
those of our variants, achieving only around 20% ASR, com-
pared to over 90% for ours on most models. Interestingly,
Engorgio exhibits an unexpectedly low efficacy compared
to its original paper. We speculate that it was originally eval-
uated in text completion, whereas our experiments focus on
dialogue scenarios with strict chat templates. To verify this,
we conducted a supplementary experiment on template-free

Model Llama3-8B Llama2-7B
Metric Avg-len ASR Avg-len ASR
w/o LoopLLM-t 981 93 % 988 92 %
defense  LoopLLM-p 887 79% 853 75%
w/ LoopLLM-t 439 14% 489 17%
defense  LoopLLM-p 872 76 % 846 74 %

Table 3: Results of our attack with and without defense.

tasks, as shown in Table 2, where our variants still outper-
form Engorgio in attack performance.

Our method includes two variants. LoopLLM-t, which
induces token-level repetition, reliably drives most models
to the maximum allowable length. However, such token-
level repetition is easily filtered. To evaluate this, we im-
plemented a simple defense that halts the generation process
when a token is consecutively generated beyond a threshold.
As shown in Table 3, the effectiveness of LoopLLM-t drops
significantly under this defense. In contrast, LoopLLM-p,
which induces phrase-level repetition, remains almost un-
affected with defense enabled, suggesting that phrase-level
repetition is more difficult to detect and more robust against
defensive measures. The experimental results of LoopLLM-
p demonstrate strong performance compared to other base-
lines, with only a slight reduction in effectiveness compared
to LoopLLM-t. Overall, these results highlight the superior-
ity of our approach, which more effectively forces LLMs to
reach maximum output limits than EOS-delaying baselines.

Transferability Results

The real-world threat of adversarial attacks is its ability to
transfer from accessible surrogate models to unseen target
models. To evaluate this, we conducted a series of trans-



Target Model GLM4-9B Mistral-7B Vicuna-7B Phi4-mini Deepseek-V3 Gemini 2.5 Flash
Max Length 1024 1024 1024 1024 2048 2048
Metric Avg-len ASR Avg-len ASR Avg-len ASR Avg-len ASR Avg-len ASR Avg-len ASR
Normal Inputs 208 0% 268 1% 231 0% 295 5% 341 0% 437 0%
LLMEffiChecker 337 6% 416 10% 379 8% 491 13% 502 3% 578 2%
LoopLLM-p 392 20% 524 31% 513 24% 608 43% 542 9% 713 14%
LoopLLM-t 438 32% 567 33% 428 16% 647 49% 672 22% 648 10%
3B & 8B 624 51% 674 47 % 473 21% 843 76 % 927 43% 894 37%
7B & 13B 645 57 % 467 27% 597 42% 730 67% 823 37% 847 32%

Table 4: Results of transfer attack. The first column lists optimization strategies, primarily conducted on Llama3-8B. The “&”
denotes ensemble optimization using LoopLLM-t. Specifically, “7B & 13B” refers to joint optimization on Llama2-7B and
Llama2-13B, while “3B & 8B” indicates optimization on two scales of Llama3. The first row shows target models for transfer.

cyclic segment GLM4-9B Llama2-7B
length token Avg-len ASR Avg-len ASR
LoopLLM-t 926 88% 947 90%
1 random1 792 64% 912 86%
random?2 903 82% 873 78%
LoopLLM-p 838 67% 865 72%
5 random1 684 54% 762 58%
random?2 664 52% 821 67%
10 random1 576 42% 697 48%
random?2 507 39% 649 42%

Table 5: The impact of cyclic segment lengths and composi-
tions. The “random” denotes tokens randomly sampled from
the model’s vocabulary, using two distinct random seeds.

fer attacks, with results presented in Table 4. We first as-
sess transferability using a single surrogate model, where
our method consistently outperforms the baselines. We at-
tribute this superior transferability to the shared tendency
among LLMs toward repetitive generation.

Next, we investigate whether ensembles of surrogate
models could further improve transferability by evaluating
two ensemble configurations: one using Llama2-7B & 13B,
and another using Llama3-3B & 8B. The results show that
both significantly improve the attack performance across all
target models compared to single-model optimization. These
results confirm the effectiveness of our ensemble optimiza-
tion. Moreover, we also evaluate transfer attacks against
commercial models. The ensemble-optimized prompts ex-
hibit strong transferability, achieving maximum allowable
lengths of 43% on Deepseek-V3 and 37% on Gemini 2.5
Flash, which corresponds to an improvement of nearly 40%
over baselines. This finding underscores the practical risk
of our attack, as it can successfully degrade the availability
of commercial LLM services without prior knowledge. We
provide examples of real-world scenarios in Appendix E.

Ablation Study

Effect of Cyclic Segment. We begin by analyzing how
the length and composition of the cyclic segment influence
the attack performance. The results are presented in Table 5.
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Figure 3: The impact of suffix length and optimization step

Varying the length of the segment ¢ under [1, 5, 10], we ob-
serve that shorter segments are more effective. This suggests
that simpler repetition patterns are easier for LLMs to repli-
cate, making them more potent inducing repetitive genera-
tion. Within each cyclic segment, we observe that specifi-
cally chosen tokens (such as LoopLLM-t and LoopLLM-p)
outperform randomly selected tokens from the vocabulary.
This indicates that the principle of repetition is still effective
with random tokens and that certain tokens in the embedding
space are more conducive to inducing repetitive generation.

Effect of Suffix Length and Optimization Step. We fur-
ther analyze the impact of two critical hyperparameters, as
illustrated in Figure 3. For the suffix length, both Avg-len
and ASR generally increase with the suffix length. This is in-
tuitive, as a longer suffix provides more repeated instances of
the cyclic segment, increasing the likelihood of initiating the
loop. However, the performance gain diminishes beyond a
certain length, indicating a trade-off between attack strength
and prompt conciseness. Similarly, more optimization steps
lead to better performance, confirming the effectiveness of
our cycle loss and gradient-based search. The early conver-
gence of both metrics suggests that our method quickly iden-
tifies an effective solution, with little improvement in later
steps due to the early stopping strategy. Additional hyperpa-
rameter studies are provided in Appendix F.

Effect of Decoding Strategy. We also investigate how dif-
ferent decoding strategies impact the attack performance.
As shown in Table 6, LoopLLM performs best under beam
search and moderate temperature sampling, while we ob-
serve a notable degradation under greedy search and high



Decoding Strategy GLM4-9B Mistral-7B
Avg-len ASR  Avg-len ASR
greedy search 818 68% 763 52%
beam search 956 94 % 852 71%
temperature=0.2 897 82% 834 68%
temperature=0.6 913 84% 883 74%
temperature=1.2 698 61% 647 41%

Table 6: Results of decoding strategies on LoopLLM-t.
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Figure 4: Left: Probabilities of the most likely token
max p(-|x<) and the cyclic segment tokens p(x.s|x<) (in-
cluding initial and successful prompt) at each output posi-
tion. Right: Attention scores over output at each input token.

temperature sampling. We attribute this to two factors: (1)
In greedy search, even with elevated target token probabili-
ties, non-cyclic tokens with slightly higher initial probabili-
ties still are preferred, preventing the formation or stabiliza-
tion of the loop. (2) high temperature flattens the output dis-
tribution, which also diminishes the probability advantage of
target tokens. However, Given that such strategies often de-
grade text quality and are rarely used in practice, our method
remains robust under common decoding strategies.

Why is Our Method Effective?

To understand the mechanisms behind LoopLLM, we con-
ducted a qualitative analysis focusing on output probabilities
and model attention. Firstly, we track the token probability at
each output position. As shown on the left of Figure 4, com-
paring the initial prompts with the successful ones reveals
that our cycle loss effectively increases the likelihood of to-
kens within the cyclic segment. Meanwhile, once these to-
kens become the most probable, their probabilities grow al-
most monotonically with repetition until it stabilizes around
a ceiling value. This observation confirms the existence of
the autoregressive vulnerability that LoopLLM leverages.
Secondly, we compute attention scores for each input to-
ken by averaging the attention weight from all output tokens
across all layers and all heads. The results are visualized on
the right of Figure 4. For the initial prompt, the attention of
output is primarily distributed on normal input. In contrast,
after optimization, both failed and successful prompt reallo-
cate the majority of the attention to adversarial suffix. This
shift suggests that our cycle loss effectively guides the model
to pay more attention to the repetitive pattern within the ad-
versarial suffix. Notably, the successful prompt exhibits a
significantly stronger attention shift than the failed one, sug-
gesting that greater attention to the suffix correlates with a

Input PPL  Output Entropy

Normal Inputs 69.34 0.278
LLMEffiChecker 4121.54 0.263
Engorgio 6728.15 0.285
LoopLLM-t 42.09 0.082
LoopLLM-p 124.71 0.147

Table 7: The evaluation of each methods using input per-
plexity (PPL) and output entropy, averaged over all opti-
mized input and corresponding output tokens.

higher likelihood of inducing repetitive generation.

Potential Countermeasures

Currently, there are no dedicated defenses for energy-latency
attacks yet. We consider perplexity (PPL) filtering (Alon and
Kamfonas 2023), a common technique for detecting adver-
sarial prompts in LLMs by flagging semantically incoher-
ent inputs. PPL is computed as the average negative log-
likelihood of input tokens, and prompts with excessive PPL
will be rejected before inference. As shown in Table 7, while
baselines like LLMEffiChecker and Engorgio show substan-
tially increased PPL compared to normal inputs, our vari-
ants exhibit low PPL, even below that of normal prompts.
This result is attributable to our suffixes with repetitive pat-
tern that steers the model into low-entropy loops, where the
model exhibits high confidence in predicting subsequent to-
kens. Therefore, LoopLLM is inherently resistant to PPL-
based filtering, despite the presence of meaningless suffixes.

Given these properties, we consider another potential de-
fense based on monitoring of output entropy, which halts
generation when the model’s output entropy stabilizes at
a low threshold. Table 7 confirms that our method pro-
duces lower output entropy than both normal input and base-
lines, suggesting the feasibility of this defense in detecting
LoopLLM. However, entropy-based filtering requires real-
time entropy tracking during inference, incurring substantial
computation overhead. Prior work that mitigates repetition
also faces similar trade-offs between efficiency and output
quality (Huang et al. 2025), underscoring the need for more
effective defenses for energy-latency attacks.

Conclusion

In this paper, we introduce LoopLLM, an energy-latency at-
tacks framework against modern LLMs that triggers end-
less output, significantly increasing energy consumption and
latency time. We empirically reveal that repetitive genera-
tion can steers the generation process toward low-entropy
loops, compelling the model to generate repeated tokens un-
til the maximum output length is reached. Leveraging this
insight, we design a repetition-inducing prompt optimiza-
tion that exploits autoregressive vulnerabilities to induce
repetitive generation. To enhance transferability, we intro-
duce a token-aligned ensemble optimization that aggregates
gradients to construct generalizable prompts. Extensive ex-
periments on 12 open-source and 2 commercial LLMs show
that LoopLLM consistently outperforms baseline methods.
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